

Lights Out
Design Document

Team 37

Client: Josh Deaton

Adviser: Dr. Joseph Zambreno

Team Members:

Tasman Grinnell Project Manager and Engine Engineer

Joshua Deaton Rendering Engineer Lead

Lincoln Kness Game Design Lead

Ben Johnson System Engineer

Zach Rapoza Prototyping Engineer

Spencer Thiele Game Designer

Cory Roth Game Designer and Rendering Engineer

Team Email: sdmay25-37@iastate.edu

Team Website: https://sdmay25-37.sd.ece.iastate.edu/

Revised: 5/04/2025 Version 2.0

https://sdmay25-37.sd.ece.iastate.edu/

Executive Summary
Most mainstream video games focus on conventionally generated Euclidean worlds. Non-Euclidean
geometry in many current games either mimics the geometry or is only implemented as research
demonstrations, resulting in unenjoyable or flawed gameplay. This project aims to create an
engaging game supported by a custom rendering and game engine for accurate Non-Euclidean
geometry. Despite the critical need for performance in game engines, current projects involving
these unconventional spaces are significantly lacking. The value of the project arises from its ability
to expand the boundaries of conventional game visuals and its open-source nature that allows
games to flourish in these rarely used geometries.

Some key requirements of this project:
● The game engine must be custom.
● The engine must render Non-Euclidean geometry with custom shaders.
● Standard games built with this engine must render at least 30 frames per second.
● Game mechanics must be interesting and engaging for the user.
● The gameplay must be smooth.

The design described in this document defines our game engine, which supports the requirements
specified. Individual submodules support operation by managing independent abstractions (e.g.,
graphics, sound, input). The engine operates on a loop, handling user inputs, determining what
data needs to be rendered, transforming it into the Non-Euclidean space, and then projecting the
data back to the user on a display screen. This engine was developed in C++ with various
third-party libraries and OpenGL. The targeted hardware is a standard (non-gaming/low-power
laptop). The game has been designed to show off this engine is called Lights Out. It is a farming
simulator that takes on a horror aspect using lighting mechanics and a warping, Non-Euclidean
world.

The current state of this project consists of an engine that renders Non-Euclidean math in a {4,5}
tessellation format. The currently implemented submodules of the engine include Input Handling,
System Scheduling, Rendering Loop, ENTT entity-component-system integration, Non-Euclidean
Shaders, custom tilemaps, Catch2 and CTest unit test integration, and other components necessary
to build a game. A fleshed-out game concept and prototype with different mechanics and visuals
exists. Currently, only a portion of the designed game is integrated and runs well on the engine and
system.

The next steps for the project are to continue integrating more sections and mechanics of the game
into the engine, such as farming and lighting. Another future task would be to refine the
management of core functionality through performance optimizations. In general, the game engine
is working with core functionality to allow the game to be developed. However, further refinement
is necessary to enhance the developer and user experience due to the informally defined API the
engine currently acts as. With the integration of the Unity-developed prototype, it is clear that
additional enhancements are needed to allow a more intuitive development lifecycle and enhance
general functionality. By continuing the development of the engine itself, higher performance can
be gained for the user, and a more straightforward API can be created to reflect other coding
practices prevalent in industry engines.

1

Learning Summary
Development Standards & Practices Used

Software Practices

● Version Control
● Separation of Concerns
● Software Testing
● User Stories
● Documentation

Engineering Standards

● Software Life Cycles
● Software Testing
● Project Management - 16326-2009
● Quality Assurance - IEEE 730.1-1995
● Standard for Video Games

Vocabulary
● IEEE Standard Glossary of Computer

Graphics Terminology
● Information Technology —

Computer Graphics

Summary of Requirements

● Renders Non-Euclidean Geometry
● Run at 30 Frames per Second
● Must be Usable on a Personal Laptop
● Interesting Game Mechanics
● Smooth Gameplay
● Runs on Engine
● Clear External Documentation

● Usable API for Other Projects
● Easy to Install
● Intuitive UI
● Easy-to-Use Controls
● Interesting and Easy-to-Follow Story
● Visually Appealing Game
● Enjoyable Gameplay Loop

Applicable Courses from Iowa State University Curriculum
● Com S 327
● Engl 314
● Com S 437

● Coms 336
● Math 265

New Skills/Knowledge acquired that was not taught in courses

● OpenGL
● Unity
● Project Scoping
● Team Interactions
● Resource Management

● Interaction With Clients
● Project Management
● Game Design
● Non-Euclidean Math
● Time Management

2

Table of Contents
1 INTRODUCTION 8

1.1 PROBLEM STATEMENT 8
1.2 INTENDED USERS 8

2 REQUIREMENTS, CONSTRAINTS, AND STANDARDS 9
2.1 REQUIREMENTS & CONSTRAINTS 9

RENDERING ENGINE 9
GAME DESIGN 9
OTHER REQUIREMENTS 10

2.2 ENGINEERING STANDARDS 10
STANDARD 1 11
STANDARD 2 11
STANDARD 3 11
ANALYSIS OF STANDARDS 11

3 PROJECT PLAN 12
3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES 12
3.2 TASK DECOMPOSITION 13
3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 14

GAME DESIGN TEAM MILESTONES 14
RENDERING ENGINE TEAM MILESTONES 14

3.4 PROJECT TIMELINE/SCHEDULE 15
GANTT CHARTS 15

3.5 RISKS AND RISK MANAGEMENT/MITIGATION 17
GAME DESIGN RISKS 17
GAME DESIGN RISK MITIGATION 18
RENDERING ENGINE RISKS 19
RENDERING ENGINE RISK MITIGATIONS 20

3.6 PERSONNEL EFFORT REQUIREMENTS 20
GAME DESIGN HOURS 20
RENDERING ENGINE HOURS 22

3.7 OTHER RESOURCE REQUIREMENTS 23
4 DESIGN 24

4.1 DESIGN CONTEXT 24
4.1.1 BROADER CONTEXT 24
4.1.2 PRIOR WORK/SOLUTIONS 26
4.1.3 TECHNICAL COMPLEXITY 27

4.2 DESIGN EXPLORATION 28
4.2.1 DESIGN DECISIONS 28
4.2.2 IDEATION 30
4.2.3 DECISION-MAKING AND TRADE-OFF 31

3

4.3 PROPOSED DESIGN 33
4.3.1 OVERVIEW 33
4.3.2 DETAILED DESIGN AND VISUAL(S) 35
4.3.3 FUNCTIONALITY 36
4.3.4 AREAS OF CONCERN AND DEVELOPMENT 37

4.4 TECHNOLOGY CONSIDERATIONS 37
4.5 DESIGN ANALYSIS 38

5 TESTING 39
5.1 UNIT TESTING 39
5.2 INTERFACE TESTING 40
5.3 INTEGRATION TESTING 40
5.4 SYSTEM TESTING 41
5.5 REGRESSION TESTING 41
5.6 ACCEPTANCE TESTING 41
5.7 USER TESTING 42
5.8 Other Types of Testing (E.g., Security Testing (if applicable)) 42
5.9 Results 42

6 IMPLEMENTATION 42
6.1 GAME DESIGN IMPLEMENTATIONS 43

PROTOTYPING 43
INTEGRATION 43
SCENE DEVELOPMENT 43

6.2 ENGINE IMPLEMENTATIONS 45
6.3 Design Analysis 47

7 ETHICS AND PROFESSIONAL RESPONSIBILITY 47
7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS 47
7.2 FOUR PRINCIPLES 50
7.3 VIRTUES 51

THREE VIRTUES ESSENTIAL TO THE TEAM 51
INDIVIDUAL VIRTUES 51

8 CONCLUSIONS 54
8.1 Summary of Progress 54
8.2 Value Provided 54
8.3 Next Steps 55
8.1 CONCLUSION 55

9 REFERENCES 56
10 APPENDICES 56

Appendix 1 – Operation Manual 57
Engine Manual 57
Game Manual 57

Appendix 2 – alternative/initial version of design 57

4

Appendix 3 – Other considerations 57
Appendix 4 – Code 57

A: PERSONAS AND EMPATHY MAPS 58
APPENDIX 5 – TEAM CONTRACT 59

TEAM MEMBERS 59
REQUIRED SKILL SETS FOR YOUR PROJECT 60
SKILL SETS COVERED BY THE TEAM 60
PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 60
INDIVIDUAL PROJECT MANAGEMENT ROLES 61
TEAM CONTRACT 61

5

 Table of Figures
FIGURE 1 - TASK DECOMPOSITION 13
FIGURE 4 – HIGH LEVEL GANTT CHART 15
FIGURE 2 - RENDER ENGINE GANTT CHART 15
FIGURE 3 - GAME DESIGN GANTT CHART 15
FIGURE 5 - POINCARÉ MODEL EXAMPLE [5] 27
FIGURE 6 - WEIGHTED DECISION MATRIX 31
FIGURE 7 - DETAILED DESIGN AND VISUALS 35
FIGURE 8 – USER-SYSTEM FEEDBACK LOOP 36
FIGURE 9 - HOME SCENE 44
FIGURE 10 - FOREST SCENE 45
FIGURE 11 – SPRITE SHEET RENDER TILES EXAMPLE 46
FIGURE 12 - INPUT MANAGEMENT MAPPING SCHEME 46
FIGURE 13 – APPENDIX A : MAX USER PERSONA 56
FIGURE 14 - APPENDIX A: SALLY USER PERSONA 57
FIGURE 15 - APPENDIX A: JORDAN USER PERSONA 57
FIGURE 16 - APPENDIX A: EMPATHY MAP 58

6

Table of Tables
TABLE 1 - RENDERING ENGINE REQUIREMENTS 9
TABLE 2- GAME DESIGN REQUIREMENTS 10
TABLE 3 - OTHER REQUIREMENTS 10
TABLE 4 - GAME DESIGN RISKS 18
TABLE 5 - RENDER ENGINE RISKS 20
TABLE 6 - GAME DESIGN PERSON HOURS 21
TABLE 7 - RENDER ENGINE PERSON HOURS 23
TABLE 8 - BROADER IMPACT ON AREAS 26
TABLE 9 – TECHNOLOGY CONSIDERATIONS 38
TABLE 10 - AREAS OF PROFESSIONAL RESPONSIBILITY 48
TABLE 11 - FOUR PRINCIPLES 50
TABLE 12 – TEAM SKILLSET 59
TABLE 13 - MANAGEMENT ROLES 60
TABLE 14 - LEADERSHIP ROLES 63
TABLE 15 - MEMBER SKILLS 64

7

1 Introduction

1.1 PROBLEM STATEMENT
The vast majority of video games in mainstream focus primarily around conventionally generated
worlds, using geometry similar to our world. Most Non-Euclidean geometry games are primarily
used for research purposes, not general entertainment. Additionally, many of these worlds use
computer tricks to pretend they’re using Non-Euclidean rendering, even though they use a
conventional game development engine. This project aims to create an engaging and enjoyable
game with a custom game engine to support the implementation of Non-Euclidean worlds.

Some of the most prominent issues in creating actual Non-Euclidean games involve performance
due to the computations required for conversions between spaces. Non-Euclidean spaces do not
translate directly, resulting in the need for many calculations and heavy resource costs. Many
current projects involving these unconventional spaces have poor performance, and proper
management of computational resources is essential.

1.2 INTENDED USERS
The people using the final product can come from many different backgrounds. One of these
backgrounds would be people who enjoy playing video games. For example, one user's name is Max
[Appendix 3 User Personas]. Max is a 17-year-old student. What makes a game enjoyable for him is
having ways to grind and optimize his gameplay as much as possible; Max needs a challenge. The
proposed solution is a perfect example of something he would enjoy. The plans for this product will
allow users to have a goal to grind for through farming and resource gathering, with the added
challenges of the world being Non-Euclidean.

Another user is Sally, an artistic 20-year-old [Appendix 3 User Personas]. She needs to have an
enjoyable game with an artistic touch because she loves art in all different forms, ranging from
music to the artistic style of the in-game sprites. The proposed solution aims to make the artistic
experience as good as possible. Meshing sprite art with the Non-Euclidean space will create an
interesting distortion on all of the game assets, adding to the horror experience of the proposed
solution.

Lastly, the user Jordan [Appendix 3 User Personas] is a 25-year-old ESports Professional. What
Jordan wants from a game is a way to have a challenging and engaging gaming experience because
he enjoys challenges and becoming the best gamer he can be. An unconventional combat system
will add a new, challenging twist to combat enemies throughout. Using different traps and yourself
as bait will add an innovative combat system that someone like Jordan would enjoy. All of these will
be amplified by the Non-Euclidean geometry, creating a fresh experience for all gamers.

8

2 Requirements, Constraints, And Standards

2.1 REQUIREMENTS & CONSTRAINTS
The primary requirements involve many baseline expectations for functional software, primarily
with performance and soft design requirements. For the game engine, the primary requirements
are to meet the requirements specified by the game design team to support the game's operation in
general. The requirements are divided into various sectors: functional, physical, and user
experience.

Game Engine

Type of Requirement Requirement

Functional Renders Non-Euclidean geometry

Functional Renders vectors of data into a laptop

Functional Runs at 30 fps (constraint)

Resource Not exceed that of a personal laptop

Physical A graphics processing unit is required on a
laptop

Aesthetic The code should be readable

Aesthetic The code should be commented

User experiential A good interface will be provided with good
documentation

Interface Be consistent with other render engine
interfaces

Table 1 - Game Engine Requirements

Game Design

Type of Requirement Requirement

Functional Easy to understand, yet interesting game
mechanics

Functional Smooth gameplay

Functional Run on the render engine

Resource Internet connection to install

Resource Uses the game engine

9

Physical A personal laptop with some form of GPU

Physical Some form of user input (Keyboard/Controller)

Aesthetic Pleasing Art Style

Aesthetic Pleasing music/sounds that mesh well

User experiential Intuitive UI

User experiential Easy-to-use controls

User experiential Easy-to-follow story

Economic/Market Easy to monitor and control the distribution

Economic/Market Demand for cool games

Interface Keyboard & mouse/controller compatibility

Table 2- Game Design Requirements

Other requirements

Type of Requirement Requirement

Timing Some working version of the game by the end
of CPRE 4920

Timing A final version of the engine by the end of
CPRE 4920

Installation Easy to install

Table 3 - Other Requirements

It can be seen from these tables that there is a wide range of requirements for this project. The main
functional requirements consist of making a working solution. The only hard constraints provided
are that the game engine must render Non-Euclidean math and that the engine must run at a
reasonable framerate. The rest of these requirements come from the standard of work that should
be created. This project does not aim to create a bare-bones project but a fully fleshed-out idea. The
aesthetic and user experiential requirements will set this project apart from others in the same
field.

2.2 ENGINEERING STANDARDS
Engineering standards are essential because they are the guiding principles for developing a
complete solution. Standards are the guiding force for products to be safe, reliable, and consistent.
Engineers can meet the expectations during development while establishing guidelines and good
practices. Users would not have any expectations of what to expect from companies without
standards. Also, there would be a significant disparity between various companies and components.
Standards promote uniformity, which allows for ease of use by the consumer.

10

Standard 1

Standard for Video Games Vocabulary [1]

This standard goal is to unify the vocabulary used in the video game industry. It aims to remove
ambiguity in terms of the use of artificial intelligence that can be used within industry. It precedes
how characters speak and how industry professionals develop new material. Terms will be defined
based on existing literature and the community's consensus. This standard is relevant because the
proposed solution to this project is a video game, so the solution should adhere to those standards.

Standard 2

Quality Assurance - IEEE 730.1-1995 [2]

This standard's goal is to put in place good practices when it comes to the development and
maintenance of software. It is a standard focusing on where failures could occur and how failures
could impact the safety of its users. It makes sure that plans are in place in case of failure. This is
relevant to the project as a plan will be implemented if the game engine fails when a user uses it.
The same idea also applies to the proposed solution.

Standard 3

Software cycles [3]

This standard goal establishes a common framework for the software life cycle. It also defines
terminology that the industry should use when referencing software life cycles. It aims to provide
reasonable standards for developing software regarding the timeline. It also wants to provide
context for software products regarding their development. This international standard also
provides processes to help define and improve existing life cycle systems in organizations. This is an
essential standard for this project. A solid framework is critical for this project's success and how
the software lives.

Analysis of Standards

The three standards above seem relevant to this project, but may not be the most pertinent. The
first standard is of utmost importance. The proposed solution is a video game; the standard should
be followed to produce a high-quality video game. While documenting how the game works and
implementing communication in the game, the vocabulary standard defined by this standard must
be followed. This standard may not be relevant to the main structure of the project, but it is
appropriate when it comes to the quality of the product produced.

The second standard may have less of an impact on the project overall. While it is essential to have
a defined plan for failure to help the users when our software fails, the software being developed is
low risk. The project will not put users in high-risk environments or build something that handles
sensitive information. The standard is essential, but it should not be the first consideration.

Standard three is vital in the later stages of this project and will become more important if this
project continues outside of senior design. Setting up a framework for the software life cycle is not a
priority if you don’t have working software. For this to be important, the software needs to be
working. The software being developed is not planned to work until the 2nd semester, so this is not

11

a consideration until then. However, a good framework is vital to maintain the game appropriately
once there is working software.

Another standard looked at was Software Testing, which will be considered once the testing stage of
the project begins. Standards revolving around rendering were looked into to see if there were any
standards on how to use/create/maintain an engine in software like OpenGL. Because an interface
for this engine was a requirement, standards regarding computer graphics and computer graphics
interfaces were researched.

12

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
This project will adopt a hybrid of both waterfall and agile approaches. The overarching method
will consist of a waterfall approach for the high-level structure of the timeline and task
decomposition, but the specific task completion will use an agile approach. This structure was
chosen mainly because of the time constraint given. This timeframe is only 2 semesters to produce
the working final deliverables. Due to this constraint, a more rigid schedule is favored to ensure
deadlines are met. This rigid schedule better aligns with a waterfall approach.

Another reason this approach was adopted was the dependency of tasks. Specific tasks depend on
the previous task being completed, so a more agile approach cannot be taken. Things can only be
iteratively improved upon when there is something to be improved upon. Once a semi-working
video game prototype exists, a more iterative approach can be taken towards tasks and problems.
This means a shift can happen over the year from a heavy focus on waterfall to an increasing
emphasis on the agile approach.

Finally, an agile approach to completing tasks was chosen because it makes changes to the
requirements easier. As a student-proposed project, the client is a student, which allows for more
frequent client feedback. It also allows the project's direction to be changed more seamlessly. This
allows for more flexibility with the requirements and improved group decision-making.

GitHub was used for version control and task tracking. Significant tasks and schedules were
maintained externally in Google Sheets using Gantt Charts. The significant tasks were tracked this
way because these tasks and deadlines will remain relatively stable. Smaller tasks were tracked on
GitHub because it was easier to update deadlines and issues when taking more iterative approaches
to completing them. Weekly meetings were used to help keep track of approaching deadlines and
ensure that the schedule remained on track.

13

3.2 TASK DECOMPOSITION

Figure 1 - Task Decomposition

The overall decomposition of tasks involves decomposing the high-level tasks between the Game
Engine and Game Design Teams. Each team will address the appropriate tasks to complete the
engine and design requirements. Along with this, teams are responsible for ensuring
communication between teams, allowing for newly defined design requirements to be
communicated to and met by the rendering team.

The game design team will perform the right branch of the task decomposition tree, pictured above,
while the engine team will operate on the tasks presented in the left branch. The game design tasks
(prototype fundamentals and specifying design requirements) will be discussed and worked on in
parallel, with the design requirements communicated to the engine team for planning purposes.
Additionally, the prototypes made in Unity will act as proof of concepts for the game itself before
implementation on the engine.

The tasks assigned to the engine team revolve around creating an engine that can support the
specific requirements of the design team, not including additional or redundant features similar to
those found in industry-standard engines such as Unity or Unreal. The underlying tasks are the
general implementation of the engine while keeping requirements in mind for creating a
straightforward and valuable API that can be used during the game development phase.

14

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION
CRITERIA
Game Design Team Milestones

● Game Selection
○ Choosing the genre and the overarching theme of the final game design.

● Design Document
○ Once a game has been chosen, the next milestone would be creating an in-depth

document detailing the main features of the game, i.e., what core features will be
included.

○ Main NPCs, Biomes, Genre.
○ Develop a larger story matching the genre and theme.

● Main Prototypes Creation
○ Implement the primary and core features needed for a minimal viable product

demo.
● Single Scene Creation

○ Integrating the core features into a singular scene.
● Functional Demo

○ Getting a demo of multiple scenes, demonstrating the main gameplay features, and
the gameplay loop.

Game Engine Team Milestones

● Mathematical Modeling
○ Must determine which form of Non-Euclidean math will be implemented.

● Basic Rendering
○ This milestone is being able to render basic sprites, shapes, and features in

OpenGL.
● Core Feature Implementation

○ Implement the following core features that are needed in the game:
■ Sprites
■ Entities
■ Lighting
■ Collision

● Math Implementation
○ Ability to render the above in a Non-Euclidean manner.

● Engine Demo
○ Create a basic demo on an example maze map to showcase the engine.

● Running a Video Game on the Engine
○ Ability to run all of the video game scenes created by the game design team

15

3.4 PROJECT TIMELINE/SCHEDULE
Gantt Charts

Figure 4 – High Level Gantt Chart

16

The Gantt charts made for CPRE 4910 and CPRE 4920 are shown above, detailing the planned
schedule of tasks this project will complete and when they should be completed. It is divided into
two main groups: Game Design and Game Engine. Communication between groups happens
regularly about functionality and specifications. However, it was deemed easier to split the tasks as
the game design team will do different tasks than the Game engine team. Both teams started by
doing project research. The Game engine will spend more time on the Non-Euclidean math in this
part of the project due to its heavier reliance on it. The game design team will primarily research
what makes a video game suitable for creating a good solution. Both teams have a part of their
schedule with learning the software because most members need to gain experience with these
software technologies. Once each team has a reasonable understanding of the software,
implementation of the core functionality of the game/engine can begin. These core functionalities
are called prototypes because they are separated and can be tested independently. Once prototypes
have been created, they will be integrated to make an initial working prototype of what the game
will look like/how the game engine will operate.

By the end of semester one, it was estimated that there would be some deliverables of a demo of the
game’s main mechanics prototype in Unity and that the underlying rendering of Non-Euclidean
math would be doable for the engine. These dates were assigned to ensure that in semester 2,
enough time would be allocated to integrating the game into the engine. After the first semester,
there was a better understanding of the system design and what efforts were needed to focus on for
the second semester. The game's main mechanics demo was met on time, and the rendering engine
deadline was met with lower effectiveness than initially thought. This was because the engine

17

lacked support for multiple tiling at that state. Additionally, the team was unable to make as much
progress as we were expecting due to understanding the responsibilities and necessary components
for the engine itself.

The main tasks of semester 2 were to build the components in our engine that the game needed
and start integration. Over the course of the second semester, the engine was finished in a
barebones state to allow for game development to occur. The primary blocking factors were due to
game design playtesting, issues with the shaders, and dealing with the intricacies of Non-Euclidean
math. Although all these issues were dealt with, it set back the timeline of the project, thus
reducing the ability to integrate fully., The performance of multiple engine subsystems prevented
our functional goals from being reached, which was another blocking factor.

18

3.5 RISKS AND RISK MANAGEMENT/MITIGATION
Game Design Risks

Task Main Risk Probability Reason for Probability

Product
Research Misidentify user needs 0.1 Team members are part of the user group

and thus know user needs.

Game Type
Research Lack of Quality Research 0.1 Team members are part of the user group

and thus know user needs.

Game
Resources
Research

Using not state of the art tools 0 Have people on the team who know what
the state-of-the-art tools are.

Idea
Generation

Lack of Innovation in Game
Choice 0.6 See Mitigation

Game
Selection

Choosing a game with too big a
scope 0.7 See Mitigation

Design
Document

Bad design, so harder to build
later 0.4

Members are passionate about this project,
so the effort will be put into place to
determine quality.

Lore
Generation

Uninteresting/too complex for
the user 0.3 Need for the game to be interesting, can

take inspiration from other games.

World
Environment Boring Gameplay 0.4

NPCs Lack of player immersion 0.4
Taking Inspiration from other games and
seeing how people react to other games
allows for better decision-making.

Prototyping
Core
Mechanics

The game will not work properly

Player
Movement

The player will not be able to
move 0.1 Basic Feature.

Monster Inconsistent Monster Behavior 0.2 Feature already implemented.

Farming
Mechanic The game will to tedious 0.2 Experience from other games inspired how

this mechanic will feel.

Lighting Lose Player Interest 0.4 More critical because it is a core mechanic
of the game.

Collision Interactions between objects
won't work 0.2 It is crucial, but left to the game engine to

figure out.

Storage Boring Gameplay cycle 0.1 Prior experience will dictate how this is
designed.

Integrating
Prototypes Buggy Experience

19

Single Scene
Creation

Prototypes won't work with
each other, leading to a delay 0.4

It is crucial to demo/ explain to an outside
person. Integrating multiple people's work
is always a challenge.

Multi-Scene
Creation

Player Information will not
carry over between scenes 0.4 Making more scenes is not as difficult if

one scene can be created.

Basic User
Testing

The game does not feel
enjoyable to play 0.4

Testing to make sure the game feels
smooth. Members are not experts in this
field, so bugs will happen.

Demo
Creation

Delays in previous steps may
lead to a lack of time

Creation of
Working
Demo

Too big of a scope the project
cannot fit everything in. This
leads to the project not being
done.

0.7 See Mitigation

Testing
Working
Demo

The game does not work 0.4
Testing to make sure the game feels
smooth. Members are not experts in this
field, so bugs will happen.

Table 4 - Game Design Risks

Game Design Risk Mitigation Plan

● Idea Generation and Game Selection:

This is a high risk for this project because it is an essential aspect. A primary need of users
is enjoyment, so the game idea needs to be a well-polished one that can bring a high level
of player immersion. This is a risk due to the team’s limited experience in game
development.

This risk is mitigated by extensively researching other games and taking inspiration from
them. This way, this game will not take unnecessary risks by generating an entirely new
idea, but instead put a new spin on a genre well-perceived by the users. This leads to risk
mitigation because there is proof that this game genre can have high player immersion if
done correctly.

● Creation of Working Demo:

This will be a high-risk task for this project for many reasons. The first reason is that the
schedule may need to catch up on pace. This means the proper amount of time for this
semester's tasks will not be achieved. Another reason is that tasks require all of the
previous tasks to work correctly and be able to work together. There are integration tasks
and testing to mitigate this, but issues are likely to arise still.

The primary way to mitigate this risk is by keeping a hard internal deadline for smaller
tasks. There is a need to stay on track with the schedule to have the proper time allocated
for this task. If this is not possible, the schedule must be adjusted accordingly. This will
result in some tasks more auxiliary to the project being transferred to the second semester
to ensure the proper allotment of time for these tasks. A list of resources also exists that
can be used to help complete tasks on time and give advice on how to go about completing
tasks.

20

Game Design Risk Analysis

Due to the mitigation plan detailed above, the team was able to prevent the risk that the game
would not be enjoyable. The risk was prevented by extensively researching other games and taking
inspiration from them. This way, this game did not take unnecessary risks by generating an entirely
new idea, but instead put a new spin on a genre well-perceived by the users. This leads to risk
mitigation because there is proof that this game genre can have high player immersion if done
correctly. From the results of our user testing, it was concluded that the game idea generated was
enjoyable to those who participated.

One risk that caused delays and more time spent on it was the creation of a working demo. When
creating a demo, the team ran into many more bugs and issues than expected. One reason was the
lack of consistent coding between team members; when integrating different mechanics, these
subcomponents did not interface well. This led to more time spent on integration than expected.
Another reason was the lack of experience developing a game from scratch, which led to the team
underestimating the number of bugs within a system. This slowed down the ability to conduct a
meaningful playtest and delayed the start of integration into the engine.

Game Engine Risks
Task Main Risk Probability Reason for Probability

Product
Research Misidentify user needs 0.1 Team members are part of the user group

and thus know user needs

Engine
Research Lack of Quality Research 0.2 There is a limited number of rendering

languages.

Math
Research Don’t understand the math 0.4

This is complex math, so time is needed
to process, understand, and then
implement.

Engine
Selection

Choosing an engine that has a high
learning curve adds delay to the
creation of features

0.1 It was already chosen before the project
started.

Math
Selection

Certain Non-Euclidean spaces are
more complex, so math gets more
complicated and worse
performance

0.2 Limiting number: choose one that would
be relatively simple to implement.

Basic
Rendering

Don't properly learn to render, so
features take longer 0.6 See Mitigation

Creating
2-D shapes

Don't properly learn to render, so
features take longer 0.3 There are plenty of tutorials, so it should

not be a significant issue.

Basic Ideas Don't properly learn to render, so
features take longer 0.3 There are plenty of tutorials, so it should

not be a significant issue.

Basic Math
Concepts Don't understand the math 0.5 See mitigation

Prototyping Delays core development if stuck
on this for too long

21

Sprites Bad rendering and bloated assets 0.2 Bloated assets are not a worry until the
optimization of the engine.

Klein Model The engine won't meet technical
specs 0.9 See mitigation

Camera
Movement

Jagged Movement makes gameplay
less fun 0.4

Tutorials exist, but this might be an issue,
given the different environments being
built.

Lighting Lose Player Interest 0.4 A core feature for Game Design needs to
work well.

Assets Bad code management and poor
optimization 0.3 Bloated assets are not a worry until the

optimization of the engine.

Input Cannot integrate well with game
design 0.2 I/O is well-documented and can be

tested easily.

Complex
Issues

Lighting Loss of performance 0.2 A core feature for Game Design needs to
work well.

Collision
System

Will not be able to implement
game design features 0.4 See mitigation

Math
Implementa
tion

The engine will not meet technical
specifications 0.9 See mitigation

Demo
Creation

Delays in previous steps may lead
to a lack of time

Creation of
Working
Demo

Too big of scope for the project,
cannot fit everything done into the
timeframe

0.5
Scoping a project is a new skill to most
members, so the chosen idea may be too
much to handle.

Testing
Working
Demo

The engine does not work 0.5

There is no prior experience on the team,
so the team does not know what to
expect when testing/verifying
correctness.

Table 5 - Render Engine Risks

Game Engine Risk Mitigations Plan

● Math

The main risk for the game engine is being able to render Non-Euclidean math. None of
the team members are math majors; the computations to convert from a Euclidean space
into a Non-Euclidean space are non-trivial. This project is not just learning how to render,
but also how to render in a new space. The main risk is that the correct
computations/conversions between spaces are not done due to a failing to understand the
math adequately.

The primary risk mitigation strategy will be working as a team and sharing knowledge
collectively. The approach is to learn this math independently, then come together as a
group and compare and contrast what was learned. By having multiple people learn from

22

each other, the risk is mitigated that incorrect information will be learned. A list of
resources that can be used is also created in case advice is needed on how to better this
understanding.

Game Engine Risk Analysis

The main risks experienced for the engine were identified, with performance issues and the shaders
serving as blockers throughout much of the project. In the final weeks of the project, the team
struggled with optimizing the shaders and performance of the tilemaps, which was one of the most
significant issues in the project itself. These issues were incredibly apparent when preparing demos
for the final deliverables, with the prototypes we created taking multiple seconds to load. However,
after hosting various live coding sessions, the team was able to make progress and solve the issues
that were experienced.

3.6 PERSONNEL EFFORT REQUIREMENTS
Game Design Hours

Task Estimated Person
Hours Reason Actual Person Hours Reason

Product
Research 100

Want to spend 2-2.5
weeks coming up with
a good idea.

80

From
background
knowledge had
a better
understanding
than
anticipated

Game Type
Research 20

Need to determine
what users
like/dislike. Each
member puts in 5
hours, so everyone
has an idea.

10

From
background
knowledge had
a better
understanding
than
anticipated

Game
Resources
Research

15

This can be done
relatively quickly, but
members should
know what resources
exist.

10

From
background
knowledge had
a better
understanding
than
anticipated

Idea
Generation 40

There should be four
people taking ~1 week
time to create a good
initial plan.

40

Game
Selection 25

~6 hours per member
to flesh out ideas and
ensure solid ideas
exist.

20

23

Design
Document 85

The game needs to be
interesting. Time
needs to be spent
making it so.

100
Spend more
time fleshing
out ideas

Lore
Generation 25

Lore is important to
keep the players
invested.

30

World
Environment 30

Exploration is a
significant part of
game design, which
needs an exciting
world.

40

NPCs 30

It is essential to
understand why
certain games are
loved/hated.

40

Prototyping
Core
Mechanics

Each core mechanic is
being given to one
person with 1.5 weeks
to
implement and test.

Some tasks
were easier
than expected,
whereas others
were harder
than expected

Player
Movement 15 1.5-2 weeks' worth of

work for one person. 10

Monster 15 1.5-2 weeks' worth of
work for one person. 25

Different
renditions of
pathfinding +
collision of the
player caused it
to take longer

Farming
Mechanic 15 1.5-2 weeks' worth of

work for one person. 25

Different ideas
of how to
plant/ what to
plant

Lighting 15 1.5-2 weeks' worth of
work for one person. 10

Collision 15 1.5-2 weeks' worth of
work for one person. 20

2 different
ways to go
about collision,
looked into
both options

Storage 15 1.5-2 weeks' worth of
work for one person. 10

Integrating
Prototypes 200 Very important, the

team should spend a 170
Less time was
spent here as it
was grouped

24

month making a solid
game.

into demo
creation. Once
two scenes
were created,
moved on to
demo creation

Single Scene
Creation 40 ~ 1 week to integrate

core mechanics. 40

Multi-Scene
Creation 80

~ 2 weeks to create
more scenes and add
more mechanics.
Allows for
documentation and
preparation for the
second semester.

60

Basic User
Testing 80

~ 2 Weeks. There will
be bugs; time is
needed to test/
change the
implementation based
on feedback.

70

Demo
Creation 150

Want to make some
polished demos to
make a good product
Also, building some
extra time in case the
team gets behind
schedule
~3 weeks.

250

Focused
heavily on a
playtest, so
more time was
spent on
making a solid
prototype

Creation of
Working
Demo

80 ~2 weeks to get a
polished demo. 125

Testing
Working
Demo

70 The goal is to make a
smooth game. 125

Table 6 - Game Design Person Hours

Game Engine Hours

Task Estimated Person
Hours Reason Actual Person Hours Reason

Product
Research 70 ~ 2 weeks to get initial

research done.

25

Engine
Research 20 Want to do it right

the first time. 20

Math
Research 30

Time needs to be
spent on
understanding the
complexities.

60

Balancing
between
researching and
implementing

Engine
Selection 5 Each member has one

one-hour meeting. 5 Simple Research

Math
Selection 5 Each member has one

one-hour meeting. 5

Trial and error
mainly started
with initial
thoughts

Basic
Rendering 80

Coupled with
research = ~ 1 month
time

115
General learning
OpenGL (new
technology)

Creating 2-D
shapes 25

It is needed so that
baseline information
is there.

30
High effort
throughout the
team

Basic Ideas 30
Time to explore
OpenGL and get used
to the software.

35

Strong
fundamentals
were needed for
the engine

Basic Math
Concepts 25 The math is complex.. 50 Lots of trial and

error

Prototyping
Giving members ~1
week to complete
each prototype.

Sprites 10 1 week. 20

Much more
involved for the
prototype and
iterating through
prototypes

Klein Model 40

One month because,
most important, this
needs to be working
exceptionally well.

20

Camera
Movement 10 1 week. 15 Relatively easy

implementation

Lighting 10 1 week. 0
Unable to get to
this point in the
implementation

Assets 10 1 week. 12 General Sprites
/Animation

26

Input 10 1 week. 16
Reimplementatio
n required
additional hours

Complex
Issues

Because of their
complexities, these
tasks may take longer
than a week to
complete.

Lighting 20

This may take more
time to implement in
a Non-Euclidean
space.

0
Unable to get to
this point in the
implementation

Collision
System 40 ~ 2 weeks with two

people. 0
Unable to get to
this point in the
implementation

Math
Implementat
ion

80
~ Everyone will spend
10-20 hours rendering
complex math.

110

Lots of testing
and redoing
work due to
complications

Demo
Creation 200

Overestimate.
Assuming previous
tasks will take more
time.
Want to create a solid
product.
~ 1 month and some.

120

Rescoped Demo
accounted for
fewer overall
hours.

Creation of
Working
Demo

120 60
Many issues with
implementation
and
performance.
Rescoping and
optimizing were
required
multiple times.

Testing
Working
Demo

80 60

Table 7 - Render Engine Person Hours

3.7 OTHER RESOURCE REQUIREMENTS
In terms of game development, additional resources were needed, as discovered during the
prototyping phase of the game design and development. The additional resources that were used
were:

● Sprites, Images

For the game development itself, using sprites was required for the game development.
Sprites allow for simple drawing operations to be performed over shapes rendered with the
engine. Since none of the team were art students, acquiring sprites and images created by
professionals would be preferable and result in a more polished and presentable game.

● Libraries for Engine Development

27

In developing the game engine, libraries must be used to ensure consistent code execution
across platforms. Due to the nature of creating windows and processing input to write
textures and shapes to the screen, various data structures must be used to copy data for the
Graphics Card. In addition to the general engine development required in the course's
timeline, writing custom code to perform these tasks will be impossible. Therefore, using
established libraries was incredibly important and helpful.

● Student Innovation Center Game Lab Access

During the game development prototyping process in Unity, members of the game design
team have been unable to run prototypes on personal laptops efficiently. Accessing the
Student Innovation Center Game Development lab would dramatically help develop, view,
and create prototyping for Proof-of-Concepts.

● Unity Version Control

Unity Version Control (UVC) could be necessary for the Game Design team, as many game
assets are huge files and will cause merge conflicts with other version control systems. The
Game Design team has used the free version of UVC, which allows up to 5GB of storage
space. However, funding may be required for the pro version of UVC as the final game may
exceed the 5GB limit.

Overall, art, libraries, game lab access, and UVC were necessary resources for this project.
Well-made sprites and images were needed to satisfy the aesthetic user requirements. Libraries
were required to reduce redundant code being written. Student Innovation Center lab access
assisted members of the game design team with prototyping on Unity. Finally, paying for UVC
would increase our team's productivity and ensure the developers' smooth development.

28

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

The design problem for this given project is in the context of computer graphics, game design, and
mathematical modeling. The proposed solution seeks to innovate within the gaming industry by
addressing the challenge of creating Non-Euclidean virtual worlds with accurate computational
implementations. While this project primarily focuses on entertainment, it also has educational
and research application implications.

The central communities this project is designed for are:

● Game Developers
● Gamers
● Academic and Research Communities

The primary audience for our project is both game developers and gamers. Game developers and
those interested in pushing the boundaries of conventional game visuals are the primary focus for
creating the game engine. The game is for gamers seeking novel and engaging experiences beyond
traditional Euclidean constraints. Academic and research areas could be secondary audiences. The
proposed game engine, which is primarily designed for games, could also be used by professors and
mathematicians who want to visualize models in a Non-Euclidean space. It can also provide
teachers a way to teach Non-Euclidean space with interactive media sources such as games or
visuals, promoting the subject and gaining popularity.

The communities this project affects are:

● Gaming Industry
● Broader Gaming Community
● Academic Researchers

This project will affect the gaming industry because it can influence how game engines evolve to
handle unconventional geometries, potentially inspiring a shift in the types of games being
produced. It will also provide the industry with an engine to develop more games in this geometry,
possibly increasing the number of users in this field and bringing it into the mainstream. The
broader gaming community may also be affected. Players who experience the game might develop a
deeper appreciation for abstract and unconventional spaces, which could foster interest in
mathematical or scientific careers. Just as the secondary audience of mathematics may use this
engine to visualize models, the project's API might be adapted for simulations in physics,
mathematics, and other scientific domains.

The primary social needs that this project addresses:

● Innovation in Entertainment
● STEM Education
● Resource Optimization

29

● Accessibility of Advanced Concepts

This project aims to develop a genuinely Non-Euclidean game engine, offering players unique
experiences and perspectives that redefine gaming possibilities. Additionally, users can gain fresh
perspectives and continue to innovate the boundaries of what games can achieve in entertainment.
Games utilizing Non-Euclidean geometry have the potential to become powerful educational tools,
making complex spatial concepts easier to understand through immersive, interactive visualization.
This project tackles broader challenges in computational resource management by focusing on
efficient algorithms for rendering Non-Euclidean spaces, with potential applications in areas such
as simulations and model visualization. Furthermore, introducing Non-Euclidean spaces to a
mainstream audience helps demystify these advanced mathematical and scientific ideas, making
them more accessible and engaging. This project’s integration of technical innovation and creative
engagement serves the gaming community and contributes to educational and computational
advancements, making it impactful across several domains.

Area Description Examples

Public health,
safety, and
welfare

This project primarily focuses on
creating a novel gaming and educational
tool, but has indirect implications for
public health, safety, and welfare
through its broader applications:

● Mental Well-Being and
Cognitive Development

● Educational Impact

By introducing players to engaging
and thought-provoking
Non-Euclidean worlds, the game
can promote problem-solving,
spatial reasoning, and creative
thinking, which positively
contribute to cognitive
development and mental
well-being.

Global, cultural,
and social

This project is designed to focus on
inclusivity, ethical practices, and respect
for the values of the diverse
communities it affects. The critical
aspects of how the project aligns with
global, cultural, and social values:

● Inclusivity and Accessibility
● Respect for Community

Practices

The game’s emphasis on engaging
and visually striking
Non-Euclidean worlds ensures it
can appeal to a global audience,
transcending cultural and
linguistic barriers.

Implementing this project does not
require or encourage changes to
established community practices
but instead introduces an optional,
enriching tool for entertainment,
learning, and creativity.

Environmental This project aims to encourage players to
plant and grow flowers and take care of
the environment around them. Key
aspects include the following:

Players gain positive connotations
associated with growing crops and
flowers by having users develop
and maintain crops. The
connotation may inspire users to

30

● Eco Friendly
● Biodiversity

grow plants and flowers and create
gardens. Some potential benefits
are increased biodiversity and
providing bees with more pollen
sources.

Economic This project has various economic
impacts at the individual, organizational,
and broader community levels. Key
aspects include the following:

● Affordability for Consumers
● Broader Market Impact

To ensure accessibility, the game
and game engine must remain
affordable for a broad audience,
avoiding high price points that
could alienate potential users.

By pioneering a genuinely
Non-Euclidean game engine, the
project could establish a niche
market, creating opportunities for
partnerships, licensing, and
expansion into educational and
research sectors.

Table 8 - Broader Impact on Areas

4.1.2 Prior Work/Solutions

There are already some games that display in a Non-Euclidean manner. HyperRogue [4] is a
Non-Euclidean roguelike game that uses exploration and combat as its primary gameplay focus. It
uses the Minkowski hyperboloid model internally and the Poincaré disk model display.

Some of HyperRogue’s Pros:

● Smooth gameplay
● Polished programming
● Non-Euclidean math

Some of HyperRogue’s Cons:

● The bare bones of a game
● Poor UI and Design
● Crashes often
● Uninteresting gameplay

This proposed project plans to differentiate itself from this game by developing a solution with a
solid UI that runs without crashing and has a fully fleshed-out game. This is planned to be
accomplished by selecting a different genre of game. HyperRogue is a roguelike exploration game,
whereas our proposed solution is a farming simulation game with exploration. The proposed genre
increases player immersion, creating a better gaming experience.

Research was done to determine what models should
be used to render the Non-Euclidean space. As used in

31

HyperRogue, the Minkowski hyperboloid model and the Poincaré disk model display are used to
visualize and store Non-Euclidean information. The Poincaré model is a mathematical
representation or projection of hyperbolic geometry where points are located inside a unit circle,
and "straight lines" are depicted as circular arcs intersecting the circle at right angles [6]. One
feature of this model is that objects very close in the model might be very far away.

The Minkowski hyperboloid is the underlying space hosting hyperbolic geometry, similar to how
the surface of a sphere is the “true form” of spherical geometry [7]. This geometric space is often
tough to visualize, requiring mathematical formulas for transformations between hyperbolic
geometry and an Euclidean space that can be projected and rendered. This hyperboloid can be
rotated with rotation matrices in the Minkowski space, like a sphere in Euclidean space with
standard rotation matrices. This was why HyperRogue used it as its internal space for computations.
The transformation between Poincaré and Minkowski is relatively straightforward. The hyperboloid
can be rendered at the point (0,0, 1) with the resulting projection being the Poincaré disk model.

4.1.3 Technical Complexity
The proposed design is internally complex due to the game engine utilizing Non-Euclidean math.
The general design is inherently complex due to the conversions between Non-Euclidean and
Euclidean spaces. The complex calculations are primarily drawn from mathematical articles and
papers, requiring a high mathematical understanding and many hours to read and understand the
published articles and papers. Furthermore, the mathematical knowledge needed to understand
many of these sources requires skills higher than calculus, primarily drawing from proof-based
mathematical concepts. Another source of complexity is the new software used to develop the
engine: C++, OpenGL, and various additional libraries. Many additional courses would be required
to learn some languages, but the libraries are not used in any required or elective coursework.
Therefore, much time must be allocated to learn the software and its intricacies. Additionally, the
engine being developed must handle many different systems, such as but not limited to a resource
management system to handle large amounts of memory requests and an entity component system
to handle all the objects used in the game.

The game design itself also has its complexities. Like the game engine, development will occur in
software unfamiliar to the group. Since the game will be run on the created engine, the internal
components and interactions between different features in our game must be made from scratch.
Some features that need to be implemented are object collision, lighting, pathfinding for monsters,
player movement, and a system in which the player can farm. None of these features are trivial and
needs to be implemented so that the game can run smoothly.

The proposed design is also externally complex. One of the requirements of our project is to handle
different input types, such as keyboard or controller, due to the fact that this is the current standard
for video game development. Additionally, current Non-Euclidean state-of-the-art games are mainly
for educational/research purposes. The plan is to exceed that by developing an enjoyable game.
Another standard that needs to be met for the solution is runtime specifications. The game needs to
be able to run at a reasonable framerate. Optimizations are a complex issue that cannot be solved
trivially.

The proposed design has many interworking systems, each using mathematical and engineering
principles to create a complex solution that renders a Non-Euclidean space. The design of our

32

solution aims to match the industry standard in many areas, such as handling different input styles
while exceeding other standards, such as enjoyable gameplay and well-designed gameplay relative
to other Non-Euclidean games.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

The primary design decisions discussed and finalized were related to the software used to develop
the project and the general high-level design of the game that must be implemented. Regarding
tooling, software was determined based on ease of learning and standard tooling relative to
common engines used in the industry (regarding prototyping for the game designs). By choosing
well-supported tools and developed software, many critical blocking factors were avoided, allowing
us to work on the code instead of fixing the underlying tools used in the project. Additionally,
mathematical models were evaluated similarly, primarily with the accessibility and relevance to the
high-level game design. Choosing an appropriate model allowed the team to focus on a specific
implementation, focusing our time and efforts instead of wasting time and effort throughout the
semester. Therefore, we got basic shaders working and a few demos to prepare for deliverables.
Finally, the high-level game design was determined based on team interest and providing an
entertaining idea for the game design. Choosing an interesting game topic was by far the most
critical decision. In game development, working on ideas people are passionate about is incredibly
important, especially regarding large volumes of work. Since we were able to choose an interesting
game idea, we continued to have high motivation throughout the year in the development process.

Key Decisions

Software Usage (C++, OpenGL, and Unity)

● Chose to implement the game engine in C++ with OpenGL graphics
○ Why?

■ A cross-platform language that can be built on multiple devices.
■ Good documentation, making it easy to learn with widespread library

support.
■ Low learning curve relative to other graphics languages, allowing for fast

learning.
■ State-of-the-art software.
■ Low-level resource management, which is beyond necessary for game

development
○ Why is this Important?

■ Implementation will be in these languages, so choosing languages to
support our requirements is imperative.

■ A good decision is needed to reduce learning times, and more time can be
spent implementing features.

● Chose to prototype game features in Unity
○ Why?

■ It is easy to learn, so less time is spent on learning and more on
implementing.

■ Good resources allow for the use of internal sprites and objects for testing
features instead of self-development.

■ Unity is a state-of-the-art system with many video games being developed
using Unity.

○ Why is this Important?

33

■ Low turnaround time allows for faster polishing of features, and more
features can be developed.

■ Learning a state-of-the-art system is needed to know what must be
implemented in the proposed engine.

Type of Math (Hyperboloid)

● Chose to implement hyperbolic space
○ Why?

■ It is Non-Euclidean math, so it meets the basic technical requirements.
■ Has applications in the real-world field of cosmology.
■ It is a relatively well-researched mathematical field, so equations are

openly available.
○ Why is this Important?

■ The project is, by definition, purely Non-Euclidean, so choosing a
hyperbolic space is necessary.

■ Selecting a specific field narrows the scope with a limited time frame.

Game Genre (Farming/Exploration)

● Choose to make a game in the farming/exploration genre
○ Why?

■ This would be the most enjoyable to implement based on the ideas
generated for the main game.

■ It would be able to show off Non-Euclidean engines in an exciting way.
■ Experience playing games from this genre allows inspiration to be taken

from well-established games.
■ Can implement features not seen in current games.
■ This genre typically has an interesting gameplay loop, a criterion of the

project.
○ Why is this Important?

■ A genre is needed to create an enjoyable game (having too many genres
makes the game feel too spread out, and not having a genre makes it feel
out of place).

■ It makes further development and designing easier and allows for an
anchor for further decisions.

■ Allows for more straightforward outside feedback.

Game Environment (Darkness/Horror-Lite)

● Chose to design a game with a central theme of horror
○ Why?

■ A horror game allows for a different spin on farming simulators (most
farming games are not horror).

■ It promotes creativity in the design of characters and sprites.
■ Horror aspects can evoke strong emotions from players, making the game

memorable.
○ Why is this Important?

■ Having a central theme ties the game together, making it seem cohesive.
■ It is another anchor for designing good NPCs, biomes, and other aspects of

the game.

34

■ A good theme paves the path for how the user should feel while playing
the game.

4.2.2 Ideation

Product research was heavily relied upon to drive the decision-making process to decide what game
genre should be implemented. The process was started by listing off games that the group
determined as high quality due to the criteria of an enjoyable game. Focus was maintained on
2-dimensional games, as a technical decision already made was that a 2-dimensional game was to
be made. For each game that was listed, reasons why these games were good and how these games
could be improved upon were listed. Two main artifacts were derived from this list: a list of genres
these games are from and essential criteria to meet while developing the game.

From this list, A brainstorming task was assigned where each team member created 2-3 ideas for
pitching potential games. These ideas did not have to be fully developed, but what was important
was the genre of the game, the central mechanic of the game, and the main theme of the game. All
members did this to ensure all bases were covered. Using the information gathered from product
research narrowed down what genres seemed better than others. After this brainstorming, five
main ideas were fleshed out. These ideas were:

1) Lights Out

A farming game that starts off peaceful and slowly becomes more sinister. The day is
peaceful initially, but monsters can come out at night. Visibility at night is limited, but the
player can place lanterns and other light sources to help them see. Specific light sources
must be lit at night. Certain days/nights will have events. Otherwise, there will be tasks
that the farmer should do at night, or they will lose crops/resources. Exploring further out
at night will allow you to get more valuable resources.

Focus: farming, exploration, suspense/thriller, resource gathering, light

2) Horrio

A 2D platformer exploration game. Generated dungeons that vary in theme with multiple
layers/levels. Players can improve their stats and items as they progress. If you beat a
dungeon, you can continue to the next, but if you die, you start at the beginning of the
dungeon you are in. As you clear layers/levels in the dungeon, you get a roguelike reward
(stats, items, etc).

Focus: Roguelike, Platforming, different themes, dungeon exploration

3) Prison Break

You are a prisoner attempting to break out of prison. You can manage relationships,
tunneling, smuggling, hiding from guards, gathering materials, craft tools, etc. Prison maps
can be premade and generated with varying difficulty.

Focus: Puzzle, prison break, resource gathering/crafting

4) Life Sentence

You're an aspiring crime lord attempting to rise to the top of an infamous crime syndicate.
You will grow old as time passes, so you must hurry and gain power. If you get caught, you
will lose years of your life in prison, bringing you closer to the end of your run. As you get

35

convicted more, it becomes harder for your lawyers to reduce your sentence, resulting in
more years lost. You will move drugs, take territory from rivals, and bank robberies, and
choose when to make your move on those above you. The more scummy your tactics, the
less respect your fellow criminals have for you. Watch out; when those you backstab get out
of prison, they may come for you.

Focus: Speed, Criminal Activity, Reputation/Status

5) Euclid-Shot
It is a fast-paced 2D bullet hell game where players navigate through intense waves of
enemy projectiles, using their shots to cancel out hostile bullets in a strategic dance of
survival. As players progress, they unlock unique classes and upgrades, each offering
different playstyles and advantages, from high-speed evasion specialists to heavily fortified,
slow-moving tanks. Roguelike elements mean each run feels fresh, with randomized
upgrades and skill trees encouraging experimentation. In a Non-Euclidean space,
projectiles will feel like they are flying from everywhere; bullets won’t be traveling in a
straight line.

Focus: Bullet hell, Roguelike, Gunplay, level-up

Another meeting was held to decide which option from these five options should be chosen.
Detailed in section 4.2.3 is the process used to make the final decision. The option chosen was
Lights Out due to its ability to utilize the Non-Euclidean space the best of the options provided.

4.2.3 Decision-Making and Trade-Off

A meeting was held to discuss the ideas above. The ideas were pitched to all group members to get
new perspectives. From this meeting, any ideas needing more detail could be expanded. Also,
additional clarification of each idea could be made in more detail. A weighted decision matrix
decided which game idea would be chosen. Based on product research and the requirements from
the project description, ten metrics were devised to measure the ideas. Each metric was given a
weight between 1-5. As a team, each idea was ranked from 1-5, where five is the best and one is the
worst of the ideas. Below is the matrix that was created.

Figure 6 - Weighted Decision Matrix

Below is a description of each metric, along with the pros, cons, and tradeoffs of ideas for that
metric and reasoning as to why the score was provided.

● Non-Euclidean Utilization

This metric is how well the idea would be able to show Non-Euclidean space. The score was
higher if being in a Non-Euclidean space would allow an exciting feature to be added.

36

A weight of 5 was assigned since it is the leading technical requirement due to its relevance
to the project.

Euclid-Shot received the highest score (five (5)) because a bullet hell where bullets travel in
a Non-Euclidean manner makes the game unique and exciting. The light mechanic in
Lights Out, seeing how lights would warp in a Non-Euclidean manner, allowed it to receive
a four (4). The other games did not have a central feature that Non-Euclidean added to.

● Other Technical Requirements

This metric measured how effective each idea would be at showing off the other technical
requirements of the proposed project. This was less emphasized because it did not refer to
the main technical requirement.

The multitude of possible subsystems (e.g., relationships, entity A.I.) available in Prison
Break would give it the best opportunity to show off the other requirements. The gameplay
structure of Life Sentence made it challenging to find how other requirements could be
met.

● Effort

The Effort metric quantified the estimated time needed to complete the game design of
this idea. A lower score would indicate that a game would be too easy or difficult to make
within the time frame.

Given the ability to do a micro-kernel development style for Horrio, it was determined to
be the easiest to implement. Euclid Shot would be the most effort due to the number of
projectiles rendered, meaning a heavier focus on resource optimization.

● User Needs Appeal

This metric measured how impactful the idea was at meeting the user needs defined in the
early assignments of this class.

Horrio and Lights Out are in a genre of games that would meet the user needs defined
earlier in this project. From product research, farming simulators, and platforming games
were generally well-received by communities. Those games also allow for features to be
added during development.

● Exceeds State-of-the-art

This metric evaluated how good the idea is compared to a state-of-the-art game in the
same genre.

Given that Mario games heavily inspire Horrio, it was determined that creating a game that
rivals Mario would be hard. Euclid-Shot would be the best possibility to make a great game
in the genre due to the Non-Euclidean space, giving it a significant difference from the
other games in that genre.

● Replayability

This metric quantified how much this game idea could be replayed. From product research,
games with a replayable factor are generally more enjoyable.

37

In the current state of video games, a game like Horrio would be played once and never
again. The unique gameplay experience of Life Sentence and its reincarnation feature would
provide the best replayability experience.

● Fun Factor

This metric is how fun a game would be given the idea.

Even though Euclid-Shot would be cool to develop, it may not be fun due to the limiting
factor of rendering optimizations. Also, that type of genre is only enjoyed by a small
community. Lights Out's unique theme and gameplay loop ideas make for a fun experience
accessible to many users.

● Developer Appeal

This metric evaluated how invested, as developers, this group was toward the idea.

Euclid-Shot was initially attractive, but after careful consideration about what would be
developed, interest was lost. Prison Break and Horrio are solid ideas, but would be too
similar to other games. This group is invested in Lights Out and how a horror theme draws
on users' emotions.

● Story

 This metric measures how suitable a story can be told in the idea.

Lights Out has the most ability out of the ideas to tell a compelling story. The genre leads to
a game being driven by story, and a shadowy environment allows for interesting characters
to appear. Games like Horrio and Euclid-Shot would have little story and, thus, a low score.

● Originality

 This metric measured how original this idea is compared to other games.

The games heavily influenced by other games, such as Horrio, were rated lower. Life
Sentence had the least influence from another game, so it got the highest score.

From this matrix, Lights Out is the game best suited for continued development. It scored highly on
all metrics, so it was the best option. Given the style of the game, other features from other ideas
can be easily incorporated. The importance of making a fun, enjoyable experience, this game allows
for the best opportunity to do that.

4.3 PROPOSED DESIGN

4.3.1 Overview

Game Design - Lights Out

A farming game that starts off peaceful and slowly becomes more sinister. The day is peaceful
initially, but monsters can come out at night. Visibility at night is minimal, but the player can place
lanterns and other light sources to help them see. Specific light sources must be lit at night. Certain
days/nights will have events; otherwise, there will be tasks that the farmer should do at night, or
they will lose crops/resources. Exploring further out at night will allow you to get more valuable
resources.

38

The main plot of the game:

You received a letter from your grandpa one day telling you to meet him at his farm because
he found something exciting he wanted to share with you. Knowing his farm is far from any
civilization and in the middle of a forest, you pack a bag and take off. As you get to his
farm, something seems off. This sort of black fog is off in the distance in the forest. As you
knock on the door, there is no response. Suddenly, a monster from the forest attacks you.
As you flee, a stranger traps the monster. They explain to you that your grandpa is missing
and you must find them. It is up to you and your basic farming knowledge to grow
resources to find your grandpa in a not-so-normal forest. You must be quick, as the
monsters keep coming after you.

Main Mechanics of the Game:

● Farming

The main mechanic is farming plants to create resources to use. However, the plants you
grow are not your typical plants. Some plants create light, some create shadows, and others
create rocks. Different seeds are found throughout the world, and only in certain areas.
Plant growth is based on watering and timing.

● Exploration

Another main mechanic is exploring a Non-Euclidean space. No map will be given, so users
must learn how to traverse it themselves. Different biomes will have unique plants,
enemies, resources, and characters. As players explore deeper and deeper, they will get
better resources and face more challenging monsters.

● Enemies

There are monsters dispersed throughout the area. They speak their own language, which
the player does not understand. Each enemy has its own style. The monster's primary goal
will be to attack the player.

● Traps

To prevent enemies from killing you, you must trap them. There is no standard combat
system in this game. You must grow plants to create traps to stop them. Once you have
created one trap, you can use it indefinitely.

● Light

The world has a day/night cycle. At night, everything is pitch black unless a light source is
placed. These light sources are used to ward off monsters at your farm. Before each night,
you must light each lamp; otherwise, monsters might destroy what you have created.
Different light sources give off differing amounts of light.

Game Engine

The game engine supports the requirements specified by the game design team. Individual
submodules supported operations by managing memory, handling inputs, and drawing to the
screen. The engine will generally operate on a loop, handling inputs from the screen and
outputting button presses and shapes to the screen.

39

The engine was built to serve as a scalable system that can support future development and shifting
design requirements. Using CMake, building the system is trivial, with source code files designated
in a centralized location for compilation. With the intended implementation, adding new features
is streamlined and straightforward.

Furthermore, external libraries are supported and encouraged to be used due to the ease of
integration and implementation that is possible using the libraries. Using external third-party
libraries, creating core functionality from scratch is not required or expected.

The core design principle we’re using is the Entity-Component-System (ECS) as the backing
manager for resources. ENTT is the specific ECS that was integrated due to how well established it
is and the heavy optimization it has previously undergone. The ECS is a necessary component due
to the many different subsystems used throughout the engine. Since a single entity has many other
data fields operated on by the various subsystems, the ECS remediates issues inherent to
Object-Oriented languages, where the entire object (and all the unnecessary components) are sent
to each subsystem.

With the ECS, a system scheduler is used to sort and prioritize the execution of the subsystems for
optimal operation throughout the core processing loop. This is done through a specific data
structure that maps dependencies for each subsystem and executes updates in the most optimal
order. The ECS hosts all the core systems for operation and allows the scheduler to access and
optimize the order of updates for the system as a whole.

The last core component is the Rendering Subsystem and the Non-Euclidean Shaders. The project's
purpose was to create our own custom shaders and to support the shaders through the engine. The
Rendering subsystem allows for the variable use of different shader pipelines to be displayed to the
user. Therefore, many different shaders can be used as long as they are included in the project,
allowing for much more freedom than traditional game engines (e.g., Unity).

40

4.3.2 Detailed Design and Visual(s)

Figure 7 - Detailed Design and Visuals

The Game Engine

The game engine will process inputs from the game to project and respond to actions performed in
the game effectively. Shaders will perform calculations to convert the Non-Euclidean world to
Euclidean coordinates to be rendered to the screen. The Entity-Component-System will manage
resources while the primary rendering loop will draw objects to the screen with helper classes to
handle inputs, configure settings, perform actions, and facilitate interactions between objects in the
world. Furthermore, the engine will support a top-down 2-dimensional projection of the world.

Entity Component System

The Entity-Component-System (ECS) maintains the memory allocation of all the required sprites
and entities. Some user inputs will require the system to load objects from memory to be used.
Computer graphics have easily-predicted memory accesses, so having a system in charge will allow
for better performance and remove the overhead associated with default C++ memory allocation
(malloc). Furthermore, objects in game development cannot be designed similarly to normal
object-oriented programming due to the many data fields being used by various subsystems.
Therefore, the ECS will manage the data fields while they are in use by the subsystems.

Laptop

The laptop is the primary I/O device for the user and the system on which the Game Engine, ECS,
and Game Engine will run. A laptop will consist of a keyboard that will be used as the input. It will

41

send these inputs to the game engine. It will receive data from the engine, a new frame that the
laptop can display on its screen, so that the user can see. The laptop itself is a specific design choice
due to the generally lower power applications, including limited computational resources. The
limitations intentionally force optimizations to increase the number of playable platforms, leading
to increased accessibility.

4.3.3 Functionality

System Loop

Figure 8 – User-System Feedback Loop

The user will interact with the proposed solution using a computer and some input device
(keyboard or controller). Players interact with elements such as moving the character, selecting
inputs, or triggering actions when playing the game. These actions will be rendered in real time by
the engine. As the player navigates the game world, the engine continuously processes data from
the game logic (e.g., the character's position, environmental changes, interactions with objects) to
produce and render frames to the display.

The game engine operates as the visual backbone of the game, responding to the player's actions to
deliver an immersive experience. Below are examples of what the game engine should be able to do:

1. Scene Initialization: The player loads into a dimly lit forest scene. The render engine
loads assets, applies local lighting, and renders the world.

2. User Interaction: The player moves toward a light seen in a cave. The lighting gradually
increases as the player gets closer to the entrance.

3. Scene Transition: The player enters the cave and creates a new environment. The engine
adjusts brightness, assets, sprites, and detail levels for the new environment.

These visual frames will be the primary output for the system. Based on the updated frames, the
user can make decisions in real-time and continue this feedback loop as long as the user wants to.

42

4.3.4 Areas of Concern and Development

The current design satisfies the requirements and meets the user's needs. Additional features will
need to be implemented to continue meeting the needs, but based on the feedback received from
user testing, these requirements were met. Users' needs and technical requirements are being
continuously updated based on what has been created.

The current primary concerns for developing this product are:

● Meeting user design constraints when it comes to artistic choices.
● Creating functional and entertaining game mechanics surrounding the farming aspects of

the game.
● Time constraints and integration between the game design and the engine.
● Performance issues due to inefficient processing methodology.

The plan used to develop solutions to address those concerns was to meet with our advisor to get
guidance on how valid these concerns are. Scope readjustment was discussed to determine the
feasibility of a project that seems completable within the time constraints. Group meetings were
scheduled to determine if any changes to the design are needed. The central questions that were
asked to advisors were clarifying if they believed, given our progress, that the constraints can be
met, and asking internally if the design has met the user needs. Some extra concerns this team had
while implementing our design were the feasibility of creating a working demo within the
timeframe. Due to delays detailed earlier in this document, there was less time than initially
planned to create a polished demo.

4.4 TECHNOLOGY CONSIDERATIONS
Technology Pros Cons

OpenGL State of the Art
Easy Rendering Language to Learn
Cross Platform

Performance variability between
platforms

Unity State of the Art
“Free” to use
Generic use
Documentation/Resources

Not customizable at the engine level
Poor optimization for what is trying to
be accomplished

GitHub/Unity
Version
Control (UVC)

Version Control
Task Allocation/Management

Github–limited file size
Github–does not handle Unity
resources very well
UVC–not free

Personal
Laptop

Ease of Use
Easy to Test
Easy to transport

Limited computing resources
Take off (in class)

Table 9 – Technology Considerations

Above are tradeoffs that were made in determining the technology being used. The decision was
made to use OpenGL as the graphics language, which allows cross-platform rendering – a vital
factor to increase accessibility by hosting multiple platforms. However, performance degradation

43

may occur due to platform-specific issues. An alternative choice could have been to develop in
another language that only works on one platform, with better performance. Still, the
cross-platform adaptability is more essential to meet the requirements. Another choice was to
prototype the game design in Unity, allowing for more progress before the game engine was
complete. The trade-off is having to spend time integrating the code written in Unity to meet the
interface of the render engine. One alternative would have been to create the render engine entirely
and then build the game on that. This was decided against due to the timing constant. Finally,
another choice was that the solution needs to run on a personal laptop. This allows for better ease
of use. However, the trade-off is that the game will have to run on some limitations of resources. A
different solution would be to make this game only run on computers with high-quality hardware
parts. Still, the downside to this solution is that it may be harder to test those specs and decreased
accessibility due to financial limitations.

44

5 Testing
In the current state of this project, multiple different systems are to be tested. In terms of game
design, this section will detail how this group implemented unit tests for each mechanic of the
game that has been designed. It will detail how these mechanics interact with each other and how
interface testing will be used to validate those interactions. The integration testing tests how the
game functions in a single scene with all the mechanics regarding the render engine. An important
section for testing the game was user testing, in which this group conducted a playtest, in which a
polished version of the game was built and sent off to prospective users to receive feedback on
whether or not the state of development met the users' needs and requirements.

The engine systems components for testing focused heavily on using existing frameworks like
Catch2 and CTest for unit testing, as well as other levels of testing like Interface and Integration.
Regression testing ensured that when additional subcomponents were implemented, they did not
break previously implemented components. Due to the lack of time, there was limited user testing
of the engine, and future iterations of this project would focus on user and acceptance testing.

5.1 UNIT TESTING
Each unit necessary for gameplay must be tested throughout development and before initial release
builds. Regarding the specific units to be tested, the currently developed units are Camera, Input,
InputManager, and Entity-Component-System classes. All of the Game Engine must be thoroughly
tested before gameplay development. Additionally, each component of the actual game must be
tested, which will inevitably build off the game engine itself. Therefore, thorough testing of the
Game Engine was required.

For the prototypes in Unity, the Unity Testing Framework (UTF) is an incredibly robust testing suite
that allows for simple unit tests in Unity and general manual tests for correctness. Another critical
portion of the game itself was how the gameplay feels, which is very subjective. Therefore, manual
testing was required for polishing gameplay and gathering opinions on the gameplay loop and
mechanics. The edit mode of UTF was used to ensure that objects and assets have the correct
properties and settings. The play mode was crucial for validating the correctness of functionality.

Manual tests will also give basic gameplay mechanics. Each mechanic implemented was created
separately in Unity in its own space. It was vetted that the mechanic worked separately through
manual testing and playing through to make sure that it met the requirements of the mechanic.
This ensured that before integrating mechanics together, each mechanic worked as intended.

The Engine was tested using Catch2 and CTest for unit tests. The game engine was much more
straightforward to test due to its functionality and demanding performance requirements.
Correctness is critical, so using vetted testing suites for C++ to ensure correct values are output for
each functional unit is ideal. CTest and Catch2 are very popular tools for C++ project testing. These
tools were also chosen due to their functionality and integration capabilities.

5.2 INTERFACE TESTING
The interfaces in the design primarily involved the Game Engine and the Game Design portions of
the project. The game does not connect to a server, meaning many interfaces will involve
components internal to the project. For example, the primary gameplay loop has to interface with
Input Managers and Shaders, and the correctness of communication will have to be ensured
through these tests.

45

Regarding the finalized product, the primary testing methods will be playtesting and CTest with
Catch2 for the unit tests and interface between components. The highly interconnected nature of
the gameplay and the classes requires close integration and efficient communication between
objects and methods.

5.3 INTEGRATION TESTING
The critical integration paths within the design were in the game engine, with response time in
latency to ensure smooth gameplay. Due to the correctness ensured by unit tests, integration tests
ensure that the individual components efficiently work together to meet performance requirements
for a smooth gameplay experience. This testing section is of utmost importance to the success of
this project.

Integration tests will be imperative in developing the final deliverable, from porting over Unity code
to the custom game engine. Once the initial unit tests are completed, stringing together individual
parts must be tested to ensure new additions are working as intended. Furthermore, monitoring
performance will be critical to identify early in the development lifecycle.

Catch2 can once again be used in integration testing due to the robust nature of the suite, along
with the fact that the scalability of tests can be extended from the interface tests to the integration
tests. An issue to focus on in integration tests is ensuring that the results of interface tests are not
drastically changed once integrations occur, meaning that the high-level focus areas concentrate on
outputs all being correct once integrated together, preventing overlapping effects from method
calls.

5.4 SYSTEM TESTING
System-level testing will primarily involve performance requirements and gameplay mechanics as
the primary focus of the system testing. Once the integration tests are completed for correctness,
performance targets will be met, using profilers to observe targets for optimizations. Additionally,
playtesting will have to occur to determine if mechanics need to improve (i.e., whether certain
mechanics need to be smoother or feel good). One of the most important requirements is to create
an enjoyable game, and the mechanics, design, and performance are the most important factors
from a user standpoint for an enjoyable game.

Integration-level testing can also be run in parallel to identify bugs or internal logic issues during
gameplay. During system testing, the integration tests are expected to pass correctly. Still, there are
many cases in longer playtests or sessions that can lead to issues with memory leaks or general
performance issues. Profiling can identify sources of memory leaks and analyze the primary
compute-heavy areas. Additionally, Nvidia Insight can also perform similar functionality for shader
performance. Still, given that the game is 2-dimensional, the likelihood of graphics card bottlenecks
was very low, even with many mathematical conversions.

5.5 REGRESSION TESTING
Regression testing occurred similarly to the integration tests due to the very similar nature of the
testing phases. Once changes are made, the existing functionality must be verified to ensure
correctness and meet performance and entertainment requirements. Additionally, playtesting can

46

filter bugs similar to alpha and beta builds in many mainstream games. Furthermore, outreach to
hear many opinions on the gameplay to ensure our base requirement of having an enjoyable and
unique experience will be essential for this testing phase.

Another vital piece to consider is performance requirements within the new updates. Profiling will
continue to be essential to observe performance gains or losses for fixes to occur and be planned.
Many optimizations will be required in the later stages once the correctness of gameplay is tested
and vetted, further emphasizing the need for profiling.

5.6 ACCEPTANCE TESTING
Acceptance testing will occur after all previous tests have been completed. Therefore, all functional
and non-functional requirements will be met at this time. However, code reviews happened at this
stage, with proper documentation required. Furthermore, each performance target was
re-evaluated at this stage, primarily meeting high-level framerate targets and memory
requirements.

Written code examined at this point was required to meet style guidelines as discussed by the team,
with clean and well-written code subject to reviewer discretion. After all issues are met, the code
will be pushed into the main branch. Additionally, beta tests of the mechanics and features added
will be performed at this stage to ensure polished animations and responsive actions are present in
the update.

5.7 USER TESTING
To determine whether or not our design meets user needs, this group designed a playtest of the
game. A playtest is a critical stage in the game development process where a prototype or
near-finished version of the game is made available to players outside the development team to
gather feedback and identify areas for improvement. To test whether our design addressed user
needs, we provided players with clear instructions, intuitive controls, and a goal-driven narrative.
Then, we observed how they interacted with the game in real time. Users were not given a complete
game but a portion of it to make the playtest short and digestible. Keeping it limited in scope
allowed the group to get better results. During these sessions, we observed how easily players
navigated the farm and forest environments, how they understood the mechanics like planting,
exploring, and using traps or lanterns.

From the playtest feedback, we identified three consistent issues: the first being frustration with the
loss of plants when dying/exploring the forest, then unclear interactions, and accidental inputs.
These insights helped us spot moments when the players' expectations clashed with the current
mechanics. In response, we have plans to reinforce the permanence of planted crops to reduce
player frustration, include visual indicators to clarify interactions with the market, and adjust the
control mappings to separate overlapping inputs. These changes aim to preserve the intended
design while reducing some of the frustrations in the current player experience.

5.8 RESULTS
Throughout development, this team employed a comprehensive testing strategy encompassing unit,
interface, integration, system, regression, and user testing to ensure the engine and gameplay met

47

functional, performance, and user experience requirements. Unit testing was conducted using
Catch2 and CTest for core engine components like Camera, Input, and ECS systems. In contrast,
Unity’s Testing Framework (UTF) validated individual gameplay mechanics and asset
configurations. Interface testing verified correct communication between internal systems, such as
input handling and rendering. Integration testing ensured all components worked smoothly
together, especially during the transition from Unity prototypes to the custom engine, with a focus
on maintaining performance and responsiveness. System testing focused on overall performance
and gameplay feel, using profilers to detect bottlenecks and memory issues. Regression testing
ensured that new features didn’t break existing functionality, and acceptance testing confirmed that
final builds met all functional, performance, and code quality standards before merging into the
main branch. Finally, user testing through structured playtests validated whether the game met user
expectations and provided an enjoyable experience, guiding final design refinements.

The results from our comprehensive testing process revealed several key insights that guided the
refinement of both the game engine and gameplay experience. Unit tests confirmed the stability
and correctness of core systems like input handling, camera movement, and entity management. In
contrast, interface and integration tests validated smooth communication and performance across
systems, especially during transitions between scenes and mechanic interactions. System testing
identified minor performance issues, particularly related to memory usage and responsiveness,
which were addressed through profiling and optimization. Regression testing ensured that newly
added features did not introduce bugs or break existing functionality. User testing, through focused
playtests, revealed that players generally found the controls intuitive and the core gameplay loop
engaging. However, some mechanics—such as seed switching and enemy avoidance—required
further clarification or balancing. Overall, the testing process confirmed that the project was on
track to meet its goals, highlighting areas for continued improvement and polish.

Future progress can be made in this area once more progress has been made in integration. User
testing was limited for the engine due to a lack of a working product for much of the process. Now
that something tangible exists to work with, more extensive user and acceptance testing can be
done on the system. It may also be warranted to attempt different projects on this system now, just
as this team showed off the engine.

48

6 Implementation
Implementations are divided by section, with engine implementations separate from the game
design implementations. Game design prototypes have been implemented in Unity to determine
initial mechanics and gameplay.

6.1 GAME DESIGN IMPLEMENTATIONS
The game design implementation process is broken down into a series of stages:

● Prototyping of basic functionality.
● Integration of prototypes with each other.
● Development of scenes.

Breaking the implementation stages down into these allows for check-ins to happen at the end of a
stage to determine the project's feasibility and if the timeline needs to be readjusted. These stages
also correlate with the different levels of testing that will occur. Prototyping will mainly relate to
unit testing, whereas integration and development of the scene will be part of integration and
system testing, respectively. The current state of progress for game design is between the second
and third stages, which entails fine-tuning the individual prototypes to work together better in the
scene.

Prototyping

This first stage focuses on creating prototypes for the essential mechanics of the game. The
mechanics focused on here were the player, tile mapping, monsters, lighting, and movement. A very
base-level working demonstration can be achieved if these mechanics can be implemented. These
prototypes were developed in Unity, and each member of the game design team was initially
assigned one of these mechanics to prototype. There was a two-week timeline to get this done. After
this time, each member presented their demo to the rest of the team to get feedback and allow
members to see what the other were doing. If the prototype met the project's requirements,
members would go on to either the next mechanic prototype or being on the next stage.

Integration

Once enough main mechanics were prototyped, the second implementation stage could begin. This
stage focused on the integration of mechanics and their interactions. Conceptually, this is very
straightforward and combines the different parts and modifies certain aspects to work together
seamlessly. The vital part of this stage was ensuring that when integration was happening, sprites
and entities were consistent and that there were not two different ways of tiling, for example. This
stage also focuses on unifying the team's code standards.

Scene Development

In the third stage, work was done to create scenes. Two scenes were created for the faculty
presentation. These scenes are the home farm scene and a forest scene. All of the mechanics that
have been implemented are used in these scenes.

49

Figure 9 - Home Scene

The home scene is where the player will start the game. It consists of a house, a silo, and several
plots of land. The house serves as just a simple image, with no deeper functionality now. The silo
will be made to be interactive. This will let the user store items there to keep things organized since
the player has limited immediate inventory space. The plots of land will serve as interactive fields,
in which the player can grow plants for future use. This overall scene can be left for the next by
taking the stairs seen to the far right. These straits will cause the player to transition to the next
scene.

50

Figure 10 - Forest Scene

The forest scene, picture above, introduces the idea that the player needs some light source.
Currently, it is implemented such that upon entering, the player is plunged into a forest so dark that
he can only see in a small bubble around him. To get through, the player will need to place lanterns
and explore. While exploring, the player must watch out for monsters that will avoid lanterns, but
not the immediate field of vision light displayed currently.

Current Status

The current state of game development consists of a game with multiple areas, enriched with
Non-Playable Characters (NPCs), fully implemented mechanics, each has undergone rounds of
testing to improve features. It is not a completed game, as time limited how much could be
implemented. Future work in the game development area includes adding the blue forest area, the
slip n' slide area, and fleshing out the story/ lore.

The full list of completed functionality is as follows:

● Game Ideation
● Mechanics

○ Farming
○ Lighting
○ Monsters
○ Inventory Management
○ Sounds
○ Shops
○ Traps
○ Seeds Types

● Home Scene
● Forest Scene

51

● Player Movement
● Prototype Demo
● Story development
● Lore creation

Monsters

While exploring the forest, the player will encounter some monsters. These monsters will chase the
player throughout the forest. If a monster comes into contact with a player, the player will die. A
player may place a trap, and when a monster runs onto a trap will be locked in place and can no
longer chase the player. Monsters use A* pathfinding algorithm to find players. Players explore the
forest for rare seeds that can be grown into unique plants, traded in the market for items, or used to
progress towards the end of the game.

Shops

Shops are a part of the game used to convert the seeds you gain from farming into valuable
materials. Users can interact with the shops, and if they have enough seeds in their inventory, they
will conduct a trade; if they don’t, a UI text box will appear telling them they need to collect some
more seeds. These are made with a shop management system class that, when the user presses the
correct button within a specific distance of the shop, checks a condition if the current player's
inventory possesses the right amount and type of seed, a transaction event occurs where the player
loses those seeds but gains the item.

52

A list of the functionality that has been implemented in the engine for the game

● Player Movements
● Sprites
● Forest Scene
● Monster Mechanic

There are things that this team was unable to accomplish in this time frame. That includes making
the blue forest scene, the slip n slide scene, and implementing more traps, seeds, and monsters.
This team was also unable to finish the story and lore of the game. This team also only had time to
implement the forest scene and the mechanics relating to the forest. The rest of the scenes and
mechanics must also be implemented in the engine.

The main reason this team was unable to accomplish these tasks was that this team ran out of time.
Specific tasks like user testing and demo creation took longer than expected, as well as realizing
that the initial scope of this project was more ambitious than what could have been accomplished
in this timeframe. It is reasonable to assume that if given more time to perform these tasks, they all
would be accomplished due to no other blockers.

53

6.2 ENGINE IMPLEMENTATIONS

Current Status

The game engine is currently in an integration-ready state with the core functionality present, but it
needs polishing. Each of the main subsystems allows for a working Euclidean prototype, with heavy
optimization required for the tile map rendering portion of the workflow due to lacking techniques
in the Non-Euclidean Shaders and determining which tiles to render in the map itself.

The full list of completed functionality is as follows:

● Entity-Component-System (ECS) Integration – ENTT library
● Input Management
● Resource Management
● Sprite Sheet Loading and Display
● System Scheduling
● Custom Component Compatibility
● Offline Storage
● Euclidean, 2-Dimensional Display (GUI and text displaying)
● Custom Developer Tooling:

○ Texture Atlasing
○ Key Mapping Management
○ Animation Editor

● Custom Tile Mapping (Non-Euclidean and Euclidean Compatible)
● Render Loop Abstraction
● Non-Euclidean Shader

54

A current image of the game being rendered on the engine itself is seen above. The design currently
renders a {4,5} tessellation mapping with a layer depth of 8. This equates to 3051 tiles being
rendered on the screen at once. This team also has z-layer depth implemented, meaning that the
rocks and the player seen on the screen are different entities that are rendered above the tiles. This
means that more than 3000 things are being rendered at any given frame. To improve performance,
our system scheduler will batch tiles that are similar and close to each other, reducing the amount
of time our buffer gets allocated and the number of draws. The tiles are generated using a BFS
based on the center tile.

Although most of the core functionality was completed, we’re still missing a few core functions from
the engine, which is acceptable due to the mismatching timeline with the game design team. If we
were to continue the project itself, these would eventually be completed, but they aren’t necessary
at this point. These functions are:

● Sound Support

55

● Collision Detection
● Different Tessellation Support
● Improving Map Generation

These were not completed due to the project's timeline and other features taking priority, especially
when considering the timeline of the Game Design Team. Due to being unable to start integration
with the Unity demo, the team did not finish these features, focusing on other features necessary
for the demo itself. Despite this, a barebones, working engine was completed with enough
functionality to support the required demo to be used for the final deliverables.

Math

This section will mention the math, including projecting the Poincaré model we used onto
hyperbolic space and how we transformed the hyperbolic space onto a Poincaré model. This section
will also include the rotation matrix used to rotate the tiles around the hyperbolic space.

Poincare (2D) ➜ Hyperboloid (3D)

Hyperboloid (3D) ➜ Poincare

The Poincaré disk and hyperboloid models are two equivalent representations of 2D hyperbolic
geometry, related by a smooth, invertible mapping. The Poincaré model embeds the hyperbolic
plane inside the unit disk, where geodesics appear as circular arcs orthogonal to the boundary. The
hyperboloid model, on the other hand, represents the hyperbolic plane as a two-sheeted
hyperboloid in 3D Minkowski space (with coordinates (x,y,z)(x, y, z)(x,y,z)) defined by the equation
above.

This transformation arises from projecting the hyperboloid onto the unit disk via stereographic
projection from the point (0,0,-1) onto the plane z=0. The inverse map returns Poincaré coordinates
to the hyperboloid, preserving hyperbolic distances. This correspondence is crucial in physics and
geometry, as the hyperboloid model simplifies certain computations, especially involving isometries
and Lorentz transformations.

56

Hyperbolic Rotation about x (Rx)

The matrix above represents a hyperbolic translation along the y-axis in the hyperboloid model of
2D hyperbolic geometry. It ensures that points on the hyperboloid remain on the hyperboloid after
transformation. The top-left value of 1 indicates that the x-axis remains fixed. At the same time, the
lower 2×2 block forms a hyperbolic rotation in the y-z plane, characterized by hyperbolic cosine and
sine functions. The parameter theta determines the magnitude of translation in hyperbolic
distance. This matrix is a core element of the isometry group SO+(2,1)\mathrm{SO}^+(2,1)SO+(2,1),
and geometrically, it moves points along a geodesic through the origin without rotating them. Such
transformations are fundamental in generating hyperbolic tilings and modeling motion in
negatively curved spaces.

Example Prototypes

Detailed below are a couple of prototypes that were developed over the course of this project. They
show how this team went about developing certain subcomponents for the system.

57

Figure 11 – Sprite Sheet Render Tiles Example

Additionally, sprite rendering and entity-component-system prototypes are in progress, with major
optimizations required to be added. Figure 11 demonstrates example sprites rendering as tiles to
serve as a base for the world.

Figure 12 - Input Management Mapping Scheme

Input management primarily relies on a mapping in Figure 12 and handling the key bindings for
different contexts. Each of the bindings will dynamically map to a function, with mappings able to
be loaded and flushed to local JSON files for storage on startup and shutdown. A high-level input
manager will also handle the mappings from contexts (different settings require different
functionality) to input objects, which hold the relevant associations between keys and the
functions.

58

6.3 DESIGN ANALYSIS

Functionality That Works Well

The implemented design demonstrates a clear and compelling division between game design and
engine development, facilitating parallel progress in both domains. One of the most successful
aspects of the implementation is the prototyping and integration of core gameplay mechanics.
Essential elements such as player movement, tile mapping, lighting, monster behavior, and
inventory management have been implemented and tested thoroughly in Unity. Staged
development—prototyping, integration, and scene creation—has proven effective in managing
progress and ensuring alignment between functionality and intended gameplay. By concluding each
stage with structured evaluations, the team was able to maintain project feasibility and adjust the
timeline as needed.

Mechanics such as the A* pathfinding algorithm for monsters, inventory-based shop systems, and
the use of lighting as a gameplay constraint (particularly in the forest scene) all function as
intended. These implementations not only reflect successful technical execution but also
meaningful design decisions that enhance gameplay. The evidence for the success of these
implementations is found in the working Unity demo, where the mechanics operate cohesively and
provide a playable and immersive experience. Creating multiple interactive scenes, including the
home farm and forest areas, further supports the system's effectiveness in unifying design concepts
and functional code.

Similarly, the custom game engine showcases a solid foundation, with key subsystems—such as the
Entity-Component-System architecture using the ENTT library, input management, and resource
management—already in place and operational. The engine successfully renders a non-Euclidean
tile map using a {4,5} hyperbolic tessellation, displaying over 3,000 tiles simultaneously.
Implementing z-layered rendering allows for proper visual stacking of entities such as rocks and the
player, contributing to the game world's clarity and depth. Performance optimizations, such as
batching nearby tiles to minimize buffer allocations and draw calls, have shown promising results in
maintaining engine performance during complex scenes.

The engine itself is functional with excellent structuring to allow for simple integration of new
subsystems due to the scalability of the CMake toolchain. Furthermore, our general design
decisions are all in accordance with recommended best practices from the external libraries we
used, resulting in an overall well-designed and implemented project. Additionally, the API used to
access and set up the engine for use in a game is relatively simple and intuitive to use with the App
entry point. However, abstracting this into a compile-time system can assist in making the process
even better for users and developers alike.

Functionality That Does Not Work as Expected

Despite the successes, several features either did not function as intended or could not be
completed within the project timeframe. The most notable limitations include the lack of
integration between the Unity prototypes and the custom engine, and the incomplete development
of some planned mechanics and scenes. Features such as NPC interactions, advanced trap
mechanics, additional seed types, the slip-n-slide scene, and the blue forest area remain
unimplemented. These gaps are primarily attributable to time constraints and the initially

59

ambitious scope of the project. The absence of these elements limits the overall completeness and
polish of the final product.

On the engine side, essential systems such as sound support, collision detection, and broader
tessellation support are not yet in place. Although the core rendering and input systems are
operational, these missing features hinder full gameplay implementation within the engine. The
rendering pipeline, while functional, still requires optimization, particularly in how it handles
non-Euclidean transformations and tile visibility determination. Moreover, while custom developer
tools, such as texture atlasing and animation editors, have been developed, they may still require
refinement to be fully production-ready.

The principal reason these aspects did not meet expectations is the misalignment between the
timelines of the game design and engine development teams. The game design team, working
within Unity, moved faster regarding prototyping and feature iteration, whereas the engine team
focused on building lower-level systems that required more time and testing. A more synchronized
planning process and a more straightforward integration strategy between the two teams could have
mitigated these issues.

60

7 Ethics and Professional Responsibility
The overarching team philosophy was utilitarianism. Our group aimed to do good work to increase
our users' overall happiness. To do that, a solution that users will enjoy, use, and come back to is
needed. Throughout this project, this group aimed to act professionally and respectively to achieve
that ethical philosophy.

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
Area of
Responsibility

Definition Relevant Item from
the Code of Ethics
[8]

Teams’ interaction
with Area / Code of
Ethics Item

Work Competence Do the best work
possible within our
skill sets and timeline.
Finish tasks on time
and in a professional
manner.

II.2.a. Engineers shall
undertake
assignments only
when qualified by
education or
experience in the
specific technical
fields involved.

To satisfy this code of
ethics, time was spent
researching the topics
of this project and
learning the software
required. This way,
the team was qualified
to produce quality
work in the field of
this project.

Financial
Responsibility

The ability to create
solutions within a
reasonable budget
and market those
solutions at honest
values.

II.4.c. Engineers shall
not solicit or accept
financial or other
valuable
consideration, directly
or indirectly, from
outside agents in
connection with the
work for which they
are responsible.

This team is
upholding this area of
responsibility by using
open-source resources
and code bases. This
reduces the budget of
the proposed solution,
as well as avoids using
unnecessary services.
This will lead to the
cost of the project
being smaller than if
paid resources were
used

Communication
Honesty

Being honest about
the work done and
the state of the
project to
stakeholders

II.3.b. Engineers may
express publicly
technical opinions
that are founded upon
knowledge of the facts
and competence in
the subject matter

This team has
interacted with this
area when
communicating with
the advisor on this
project. This team has
put an effort to be
honest about the
progress made to our
advisor to get valid
feedback.

61

Furthermore, this
group strives to
communicate our
progress within the
team honestly.

Health, Safety,
Well-Being

An attempt should be
made not to harm the
well-being of
stakeholders

I.1. Hold paramount
the safety, health, and
welfare of the public

This group holds this
area of responsibility
in high regard. The
aim of this project is
to develop a solution
that does not harm
the well-being of
others and the public.

Property Ownership Do not use the
property and ideas of
others without
consent

III.9.b Engineers
using designs
supplied by a client
recognize that the
designs remain the
property of the client
and may not be
duplicated by the
engineer for others
without express
permission.

The team has
interacted with the
area of responsibility
regarding our code
base. The group has
chosen to write our
own code base and
not copy and paste
others’ code from
other sources.

Sustainability Develop products in a
way that it does not
harm/does minimal
harm to the
environment.

III.2.d Engineers are
encouraged to adhere
to the principles of
sustainable
development to
protect the
environment for
future generations.

This code of ethics
was not a guiding
factor in the project's
determination. Due to
the low dependency
on hardware and
software costs,
sustainability was not
a high area of concern
this semester for the
team.

Social Responsibility Develop solutions
that attempt to
improve the world

III.2.a Engineers are
encouraged to
participate in civic
affairs; career
guidance for youths,
and work for the
advancement

By striving to create a
good and fun product,
the hope is to provide
users worldwide with
enjoyment.

Table 10 - Areas of Professional Responsibility

One Area Team Performed Well: Financial Responsibility

62

The team has performed this area, as seen how this project stuck to a low-cost budget. Many
software projects often have bloated budgets and set unrealistic expectations for personnel hours.
The bloated budgets usually cause the cost of developing software to be high, which leads to the
cost of buying software to be high as well. The team's approach to not having a bloated budget is to
avoid using services that explicitly require payments. One example of this is Unity Version Control.
Given the size of the project, this group would have to pay to use that resource monthly. Instead,
the group decided to use git as a version control history. The tradeoff is that managing game design
files will be more difficult, with the benefit of reduced cost. Another way this team reduced the
budget is by using open-source software and resources. The game engine is developed in OpenGL,
which is free software. A choice could have been made to develop software that costs money. The
benefit of choosing paid software is that it comes with extra resources. However, that benefit is not
worth the cost of the software itself. This upheld the ethic because using low-cost technology and
resources allows the project's budget to be well-maintained.

One Area Team Lacked: Social Responsibility

An area of responsibility this group did not focus heavily on is social responsibility. The design of
this project left a low impact on improving the social environment. This is due to the fact that the
primary purpose of this project is for personal enjoyment. This project aimed to bolster an
individual's enjoyment, but not a society or community. There was an attempt to make the game
engine usable for the academic and research community. However, this was not achieved due to the
time constraints and focusing on the primary user needs. Given more time, it would be reasonable
to develop an API that would allow for mathematics and other research to visualize models in
hyperbolic space.

63

7.2 FOUR PRINCIPLES
Table 11 - Four Principles

64

Broad Context Area Beneficence Nonmaleficence Respect for
Autonomy

Justice

Public health, safety,
and welfare

Promotes
cognitive
development
and mental
well-being
through
engaging
gameplay.

Minimizes safety
risks by avoiding
harmful or
exploitative
content.

Offers
players
choices in
gameplay to
explore and
learn at
their own
pace.

Ensures
accessibility
features for
diverse
populations,
promoting
inclusivity.

Global, cultural, and
social

Encourages
global
appreciation
for abstract
concepts and
STEM
education.

Avoids cultural
insensitivity or
conflict by
respecting diverse
values.

Respects
players’
cultural
identities by
avoiding
stereotypes
or exclusive
designs

Provides
equitable
access
regardless of
nationality or
cultural
background.

Environmental Reduces
energy
consumption
by optimizing
computationa
l efficiency.

Minimizes
negative impact
by designing for
broad hardware
compatibility.

Allows users
to choose
energy-effici
ent settings
for
gameplay.

Promotes
sustainability
by
demonstratin
g responsible
resource
usage.

Economic Creates jobs
and promotes
STEM
learning for
long-term
economic
growth.

Reduces potential
financial strain on
consumers
through
affordability
strategies.

It provides
options for
consumers
to purchase
within their
financial
means

Makes the
product
accessible
across income
levels by
tiered pricing
or discounts.

Important Broader Context-Principle Pair: Public Health, Safety, and Welfare - Beneficence

This project aimed to foster mental well-being and cognitive development by providing an engaging
and thought-provoking experience. By incorporating features like educational tools and
problem-solving mechanics, this group ensured the game delivers positive, meaningful impacts to
players. To achieve this, focus was placed on balancing entertainment with learning and conducting
user testing to refine how the game benefited users cognitively.

Lacking Broader Context-Principle Pair: Economic - Beneficence

The project has a limited effect on long-term economic growth and STEM learning. This is due to
the fact that the project will be released as free open-source software and will not generate income
to create jobs. The team can improve our economic benefits by creating a quality open-source
engine that companies would like to reuse. Furthermore, the creation of educational material on
the engine would be able to promote STEM learning.

7.3 VIRTUES

Three virtues essential to the team
● Honesty
● Cooperativeness
● Responsibility

These virtues were decided as the most important to our group as a team. Honesty is an important
virtue to have when working as a group. Individuals must be honest with each other when
communicating what has been done and what concerns they have. As a team, honesty is essential
when communicating our plans for this project to the outside world and our advisors. To support
this virtue, this team has been honest with each other about what has been done regarding work.
An effort was made to be honest with our advisor about the evolving state of our project.
Cooperativeness was vital to this team as well. Being a team, members must work together to solve
problems and design solutions. One person cannot do this project, so teamwork must happen. This
team has used weekly meetings to ensure everyone is communicating and on the same page about
what is happening. There is open communication between what each team member is doing and
open communication between exchanging ideas and troubleshooting. Finally, responsibility is an
essential virtue of this project. Each team member must take responsibility for the tasks that they
are given. They must take charge of their work and complete it to a high standard and on time. If
this team is not being responsible, the deadline will not be met for this project.

Individual Virtues

Tasman Grinnell

Virtue Demonstrated: Communication

One of the most significant responsibilities that the team has assigned to me has been to keep the
team on track and communicate to ensure that the team is on track, specifically with the plethora
of assignments that we have for Senior Design. The reason why this is important to me is that
keeping on top of deadlines is generally important for me, and being able to help keep the entire

65

team on track with my mindfulness of deadlines is a very important way to keep the team working
well.

Virtue Lacking: Clear and Thorough Documentation

The virtue of clear (and thorough) documentation is a very important virtue for me, due to the fact
that documentation is one of the most essential facts in creating software that helps extend
longevity. By providing documentation, others can continue work and iterate on versions after the
initial teams move on from the project. Additionally, documentation is incredibly important in
industry to allow for the smooth functioning of services and software, resulting in documentation
being very useful. To demonstrate this, we can begin to generate our own documentation for the
software using various services and documentation creating tools.

Joshua Deaton

Virtue Demonstrated: Helpfulness

A virtue that I have demonstrated is my willingness to help others. I have demonstrated this by
creating the toolchain that allows my team to perform development. Furthermore, I have improved
upon this build chain from the suggestions of Ben and Tasman, as well as helping Ben and Tasman
if they were ever having difficulties adding in new libraries or trouble compiling. This virtue is
important to me as being a helpful person enables the team to be more successful and productive.

Virtue Lacking: Consistency

One virtue I have lacked to demonstrate as much as I would like throughout this project was
consistency. Much of the work I have done is done in bursts and is not consistent. Part of this is due
to the numerous other personal projects, class projects, and papers. By failing to be consistent, it
can affect the team’s work ethic as well as the quality of our final product. I will take this experience
and see how not being consistent can prohibit a project's success. I hope to improve upon this
virtue by going above and beyond my responsibilities in my future endeavors.

Lincoln Kness

Virtue Demonstrated: Willingness to Take Initiative

A virtue that I have demonstrated is a willingness to take ideas/prototypes to consolidate them into
one. I have demonstrated this throughout a few phases of our project when it comes to our
prototypes. What I mean by this is that we would individually work on implementing one specific
game mechanic in Unity. I have taken the time to take each of the prototypes made and combine
them into one package, allowing the different prototypes to work together.

Virtue Lacking: Thorough Documentation

One virtue that I seem to have struggled with this project was documentation. This is important
because it allows others in the group to easily be able to look at the work I have done and be able to
understand it easily. A way that I can work to start demonstrating this virtue is to create more
in-depth documentation, whether that means creating more concise comments in code or creating
separate documents explaining things in a broader sense. For my future work, I hope to make
strides in showing these virtues more.

66

Ben Johnson

Virtue Demonstrated: Problem Solving

Throughout this project, I have taken a proactive approach to solving problems that arise. In group
environments, it is important to solve issues quickly and effectively. Otherwise, small snags might
hold up the entire team for a long time. I have done my best to help teammates with problems as
they arise, and also to reach out for help when I get stuck.

Virtue Lacking: Organization

When working on large projects in groups, it is important to create a project structure to organize
and coordinate team efforts. For a software project like this one, organization mostly entails
creating an issue board and dividing up those tasks among team members over a set timeline. I
didn’t get one of these setups until halfway through the semester, and even no,w it isn’t used as
effectively as it should.

Zach Rapoza

Virtue Demonstrated: Keanu

One virtue I have modeled this project on was keanu, which, based on the slides, means being cool
and easygoing. This is important to me because while you need to take things seriously, if there is
one thing I have learned throughout college, it is that I am not perfect. As such, it is important to
understand that sometimes you just have to go with the flow. One way that I have demonstrated
this virtue is by trying to be more laid back during meetings. This is not to the extent that I zone
out, but rather let other people get their full idea formed and out on the table before I start seeing if
it will hold up.

Virtue Lacking: Responsiveness

One virtue that I have struggled with is responsiveness. This is important because you need to
respond in a quick and timely manner. This ensures that people do not end up with a roadblock
that they cannot overcome. One way I have demonstrated this is by prompt responses to
communication on weekends and always responding by the end of the day. One way in which I have
failed to do this is when I am really busy, I will put off responding for a couple of hours until after I
have had a chance to breathe.

Spencer Thiele

Virtue Demonstrated: Cooperativeness

One virtue I believe I have demonstrated is cooperativeness. Cooperativeness is an important part of
game design and development because of how interconnected the elements of a game are. When
leading the brainstorming and design meetings, I took measures to ensure everyone gets a chance
to come up with and communicate ideas through various techniques. This ensures we have the
largest pool of ideas to draw from and build into our game. I also encouraged quick communication
when stuck on bugs by implementing a bug bounty system.

Virtue Lacking: Timeliness

67

One virtue I have been lacking throughout this project was Timeliness. In a team development
setting, delivering project pieces on time is important if you want to keep to the planned schedule.
While I did reply to communications swiftly, I wasn’t finishing my project work in the timeframe I
promised. Running into unpredictable issues is a normal part of software development. Still, I failed
to deliver a finished prototype on time multiple times simply due to a lack of invested hours. Going
forward, I will allocate more time to development for future projects.

Cory Roth

Virtue Demonstrated: Thoroughness

One virtue that I have demonstrated well in this project was my ability to be thorough and attentive
to the project. I have been tasked with taking the notes during meetings and ensuring that the
group has all the information it needs to succeed. I have attended all the meetings and lectures,
been attentive, and taken good notes for each meeting and lecture. This allowed for the group to
finish assignments quicker and to a higher standard because we were able to look back on what we
did and were logging information. I have been thorough because I have been making sure that the
assignments we submit are of quality and thought.

Virtue Lacking: Time Management

One virtue that I feel I have not demonstrated well is my time management. I have had a busy
schedule with other classes, so I have not been able to commit as much time to this project as I
would have liked to. This is important to me because in order to create a good project, time needs to
be put into it. You need to put time into the work in order to be proud of it.

68

8 Conclusions

8.1 SUMMARY OF PROGRESS
Game Engine

● Built up the engine from scratch with the majority of functionality necessary for game
development

● Includes Input Handling, System Scheduling, Rendering Loop, Non-Euclidean Shaders,
Tilemaps, etc.

● Offline Storage
● Custom Developer Tooling:

○ Texture Atlasing
○ Key Mapping Management
○ Animation Editor

● Custom Tile Mapping (Non-Euclidean and Euclidean Compatible)

Game Design
● The design and iteration process was repeatedly undergone using a Unity Prototype.
● Playtesting to receive feedback on gameplay mechanics before transitioning to our engine
● Developed a fully fleshed-out game design

○ World Environment
○ Biomes
○ NPCs
○ Mechanics
○ Story

Throughout the project, our team made substantial progress in game engine development and
game design. The project was divided into two major tracks: building a custom game engine from
the ground up, and designing and iterating on gameplay systems using a Unity-based prototype.
This bifurcated approach allowed us to make parallel advancements, validate gameplay mechanics
early, and construct a solid technical foundation for future integration.

On the engine side, the team successfully developed a custom game engine that includes a wide
range of core systems essential for 2D game development. These systems include input handling,
system scheduling based on an Entity-Component-System (ECS) architecture, a real-time rendering
loop, and support for advanced features such as non-Euclidean shaders and tile map rendering. Of
particular note is implementing a rendering system capable of visualizing {4,5} hyperbolic tilings
within the Poincaré disk model, allowing the engine to display complex, infinite-style geometry.
The engine also supports multi-layered z-depth rendering, efficient instanced drawing, and
configurable texture atlases. These accomplishments demonstrate both technical competence and a
commitment to innovation within the project scope.

Concurrently, the game design team employed Unity as a rapid prototyping tool to explore and
iterate on gameplay mechanics. This approach facilitated a cycle of design, playtesting, and
refinement that helped ensure that the mechanics under development would be engaging and
coherent when later ported to the custom engine. This process developed and validated several core

69

features, including A* pathfinding for enemy AI, a player inventory and shop system, lighting-based
exploration mechanics, and modular scene construction. Playtesting sessions provided valuable
feedback that influenced balancing decisions and interface adjustments, allowing the game to
evolve in response to user experience.

Together, these two parallel efforts advanced the project toward its core goal: to create a cohesive
and technically innovative game experience grounded in custom-built tools. While the final
deliverable includes a functional Unity demo and a robust, partially integrated engine, some
features remain in development or unimplemented, such as NPC interactions, additional biomes,
and full collision and audio systems in the engine. Nevertheless, the accomplishments thus far have
laid a strong foundation, and the results demonstrate both feasibility and forward momentum.
In summary, the project achieved many of its core objectives. The custom engine showcases original
engineering in non-Euclidean rendering and engine systems, while the Unity prototype validates
the core gameplay vision through hands-on testing and iteration. These results reflect a high level
of collaboration, adaptability, and ambition from all team members.

8.2 VALUE PROVIDED

The design of our game and custom engine was developed with specific user needs and project
goals in mind: to create a unique gameplay experience grounded in hyperbolic geometry, and to
support this experience with a flexible, performant, and extensible custom-built engine. The project
addresses both the experiential needs of the player—providing novelty, challenge, and
immersion—and the technical challenges of visualizing and interacting with non-Euclidean spaces.

From a user experience standpoint, using {4,5} hyperbolic tilings introduces a novel spatial
structure rarely explored in mainstream games. This satisfies a demand for originality and cognitive
engagement among players seeking unique environments and navigation challenges. Playtesting of
our Unity prototype offered preliminary validation of this value: players consistently expressed
curiosity and intrigue at the unfamiliar geometry, and many cited the exploration mechanics as the
most memorable feature of the experience. These reactions suggest that the core design resonates
with players looking for games that challenge their spatial reasoning and provide novel aesthetic
experiences.

On the technical side, the project sought to overcome limitations of existing game engines by
creating one that supports efficient rendering and manipulation of hyperbolic space. Mainstream
engines like Unity or Unreal are not optimized for non-Euclidean rendering; they often require
workarounds or custom shaders that are difficult to integrate cleanly. Our custom engine addresses
this problem directly through native support for Weierstrass-to-Poincaré projection in the vertex
shader pipeline and instanced rendering techniques tailored to hyperbolic tilemaps. This approach
has yielded a rendering system that can display thousands of tiles at interactive frame rates, which
would be computationally expensive or infeasible using traditional Euclidean assumptions. Thus,
the engine provides a concrete technical value: it fills a gap in current tooling for developers
interested in non-Euclidean game design.

70

This project contributes to a growing interest in mathematical aesthetics and educational gameplay
in the broader context of game development and procedural content generation. By demonstrating
that hyperbolic space can be rendered and navigated efficiently, our work paves the way for further
exploration of mathematical games, educational simulations, and spatially experimental narratives.
For example, our engine could be adapted to teach geometry or topology in interactive, visual ways
that go beyond static diagrams or textbook problems.

Moreover, the modular structure of both the gameplay systems and the engine components
provides room for scalability and future development. Systems like ECS-based scheduling, tilemap
parsing, and dynamic lighting are all designed to be reusable and extendable. This makes the
project not only a functional prototype but also a foundation for future research and creative
development in the space of mathematically informed game design.

8.3 NEXT STEPS

Summary of Next Steps

● Polish Engine
○ Performance Optimization
○ Intuitive API Design
○ Improve Non-Euclidean Map Generation

● Continue Integrating Unity Demo with Engine
○ More Areas
○ Flesh out the in-game story

● Finish / Continue Non-Euclidean Shaders
○ Add other tessellations

While this project marks a substantial milestone in the development of a custom engine and game
prototype set in hyperbolic space, there remain several critical avenues for future work that would
significantly enhance the functionality, usability, and creative potential of the system. These next
steps would build directly upon the foundational accomplishments of our current engine and
gameplay design.

A key area for continued development is engine polish and performance optimization. Although the
engine currently supports interactive rendering of non-Euclidean environments, there is significant
room for improvement in computational efficiency, especially for larger-scale maps and more
complex shaders. Optimizing data structures, refining the rendering pipeline, and profiling memory
usage would allow for smoother performance on a broader range of hardware.

Another priority is refining the engine’s API to be more intuitive for future developers. As it stands,
the engine is powerful but primarily suited for internal use by the original team. By formalizing
documentation and improving the modularity and clarity of the API, the engine could become a
viable platform for other designers and developers interested in experimenting with non-Euclidean
geometry or custom rendering techniques.

On the gameplay side, expanding the non-Euclidean map generation system will be essential for
creating more prosperous and more dynamic worlds. This includes support for procedural
generation, additional tessellation types beyond the current {4,5} tiling, and improvements to how

71

map data is stored, loaded, and modified at runtime. Each of these steps would contribute to a
more scalable and varied gameplay experience.

One of the most important long-term goals is the continued integration of the Unity prototype with
the custom engine. The Unity version of the game currently functions as a testbed for gameplay
mechanics, while the custom engine handles rendering and spatial logic. Unifying these two
systems—or translating the full gameplay into the custom engine—will allow for a seamless and
cohesive development process, reducing redundancy and enabling features like real-time
debugging, cross-platform builds, and tighter iteration loops.

In addition to technical improvements, there is also creative and narrative work to be done.
Expanding the in-game story, designing new gameplay areas, and completing the development of
the non-Euclidean shaders will help deliver a more immersive and complete experience to players.
These elements are essential for transforming the current prototype into a polished, fully-realized
game.

Finally, there is potential for entirely new projects based on what we have accomplished. For
example, the engine could serve as the foundation for educational tools that visualize hyperbolic
geometry, or for creative tools that enable artists and designers to explore novel spatial
configurations. In a broader societal context, such projects could foster public engagement with
advanced mathematics and spatial reasoning, bridging the gap between abstract theory and
interactive experience.

72

9 References
[1] IEEE Standards Association, “IEEE Standard 2983: Title of the Standard,” [Online].IEEE Available:
https://standards.ieee.org/ieee/2983/10523/. [Accessed: Nov. 19, 2024].

[2] "IEEE Guide for Software Quality Assurance Planning," in IEEE Std 730.1-1995 , vol., no., pp.1-20,
10 April 1996, doi: 10.1109/IEEESTD.1996.80817.

[3] IEEE Standards Association, “IEEE Standard 12207: Systems and Software Engineering – Software
Life Cycle Processes,” [Online]. Available: https://standards.ieee.org/ieee/12207/5672/. [Accessed:
Nov. 19, 2024].

[4] Rogue Temple, “Hyperrogue Development Page,” [Online]. Available:
https://www.roguetemple.com/z/hyper/dev.php. [Accessed: Nov. 19, 2024].

[5] D. Osudin, C. Child, and Y.-H. He, “Rendering Non-Euclidean Space in Real-Time Using
Spherical and Hyperbolic Trigonometry,” in Computational Science – ICCS 2019, vol. 11539, Springer
International Publishing, 2019, pp. 543–550. doi: 10.1007/978-3-030-22750-0_49.

[6] Rogue Temple, “Hyperrogue Models Page,” [Online]. Available:
https://www.roguetemple.com/z/hyper/models.php. [Accessed: Nov. 19, 2024].

[7] M. Bremer, “Non-Euclidean Geometry Explained,” Hyperbolica Devlog #1 [YouTube video].
[Online]. Available: https://www.youtube.com/watch?v=1908.01742. [Accessed: Nov. 19, 2024].

[8] NSPE, “Code of Ethics for Engineers,” National Society of Professional Engineers, [Online].
Available: https://www.nspe.org/resources/ethics/code-ethics. [Accessed: Nov. 19, 2024].

[9] M. Bacarella, "EnTT: Gaming meets modern C++," GitHub repository. [Online]. Available:
https://github.com/skypjack/entt. [Accessed: May 2, 2025].

[10] D. Herberth, "GLAD: Multi-Language GL/GLES/EGL/GLX/WGL Loader-Generator," GitHub
repository. [Online]. Available: https://github.com/Dav1dde/glad. [Accessed: May 2, 2025].

[11] GLFW Project, "GLFW: A multi-platform library for OpenGL, OpenGL ES, Vulkan, window and
input," GitHub repository. [Online]. Available: https://github.com/glfw/glfw. [Accessed: May 2,
2025].

[12] O. Cornut, "Dear ImGui: Bloat-free Graphical User Interface for C++ with minimal
dependencies," GitHub repository. [Online]. Available: https://github.com/ocornut/imgui.
[Accessed: May 2, 2025].

[13] G. Guennebaud, B. Jacob, and others, "Eigen v3," GitLab repository. [Online]. Available:
https://gitlab.com/libeigen/eigen/. [Accessed: May 2, 2025].

[14] C. Riccio, "OpenGL Mathematics (GLM)," GitHub repository. [Online]. Available:
https://github.com/g-truc/glm. [Accessed: May 2, 2025].

[15] N. Lohmann, "JSON for Modern C++," GitHub repository. [Online]. Available:
https://github.com/nlohmann/json. [Accessed: May 2, 2025].

73

[16] Sean T. Barrett, "stb: Single-file public domain libraries for C/C++," GitHub repository. [Online].
Available: https://github.com/nothings/stb. [Accessed: May 2, 2025].

74

10 Appendices

APPENDIX 1 – OPERATION MANUAL

Engine Manual

Engine Overview

The game engine repository uses the following organization:

lib/ contains all the libraries required for functionality;;

ne_engine/ contains the source code for each submodule and core functionality

res/ contains atlases, textures, and fonts for use in the engine (drawing sprites, displaying text,
etc.);

shaders/ contains the shader code for the Non-Euclidean shaders used by the Graphics
Processing Unit;

tests/ contains C++ files used for testing functionality, using a high-level version of the game
engine rendering loop;

75

tests/unitTests contains Catch2 unit tests.

Using the Engine

For development or use of the game engine, install the prerequisites for building and interfacing:

1. Git
2. CMake
3. Ninja
4. Catch2
5. Initialize Submodules

Before using the engine itself, make sure that CMake and Ninja are both on your PATH
environment variable. This will allow for the commands for generating the build itself.

Development

To set up the repository, follow the instructions below after installing the prerequisites:

1. Clone the Repository.
2. Navigate to the Repository’s root directory (NonEuclideanEngine/) and update and

initialize the submodules using git submodule update --init
3. Initialize project using the command cmake -S tests -G Ninja
4. Build the project using the command cmake --build build
5. Run the compiled executable.

The CMake file found in the tests/ folder specifies the target files to compile, and the
tests/unitTests/ folder is used for creating and specifying unit tests used for testing
functionality.

Coding Conventions:

When adding functionality, a submodule will have the following structure:

Figure A1.X – Appendix 1: Submodule convention.

Note: When adding classes or functionality, the CMakeLists.txt file in the ne_engine/
directory needs to be updated to include the additional files or subdirectories for building.
Additionally, the ne_engine.hpp file found in ne_engine/include/ folder needs to be
updated as well.

For each submodule, the include/ directory hosts C++ Header files (with file extension .hpp)
while the src/ directory holds the C++ source files.

76

Using the Engine

Ensure that all prerequisites are met. In your repository, clone the engine repository and add the
directory as a subdirectory (e.g., in your root directory, create a CMakeLists.txt file and include
the command add_subdirectory(NonEuclideanEngine).

Adding the engine repository as a subdirectory will allow for full engine functionality through a
single include for your files (#include “ne_engine.hpp”).

Custom Components

TODO: Adding components and generally doing stuff with the engine.

Interaction with the engine is performed through the App.hpp class, which is used for adding
systems and initializing global resources.

To add a component, the App.InsertResource<Type T>() function must be called, where
Type T is a class that needs to be registered with the engine.

Below is an example of a Resource Manager

Plugins – How to operate on the app – Adds systems to the app or adds resources to the app.

Game Manual

Setup

The game has two main components: a completed, working build via Itch.io and the development
environment in Unity. The setup for each is as follows.

Itch.io: To install and run the Itch.io build of the game, follow the procedure below

1. Navigate to and download the zip file corresponding to your OS Lights Out
a. We STRONGLY suggest using a Windows system due to issues on Linux

2. After the download completes, unzip the file and open the folders until you find the
executable file corresponding to your system

a. Windows

b. Linux

3. From there, run the executable file, and you are good to go
4. Play the game and enjoy
5. Look at the Playtest Document in Appendix 3 for playtest instructions

77

https://drive.google.com/drive/folders/1iPK3ONsOmH05RUwGEO4VloMKtd25edMY

Unity: To set up the Unity development environment, follow the procedure below

1. Navigate to https://unity.com/unity-hub and download Unity Hub
2. In Unity Hub, navigate to Install and install the Unity editor (Unity 2022.3.49f1)
3. Next, we need to clone our development repo

(https://github.com/sdmay25-37/GameDesignUnity) using either Git or by downloading
the zip

a. You can install Git via https://git-scm.com/downloads
4. To load the project, navigate to the Projects tab in Unity Hub and select Add Project. Select

the from disk option from there and locate the path to the cloned repository.
5. You will also need to have an IDE for C# installed on your device

a. We recommend using VS Code – https://code.visualstudio.com/download

Development (Unity Only)

To modify the game, you should follow the general practices for development in Unity. Our game
follows the general structure of Unity games, consisting of a combination of game objects and their
corresponding scripts.

To modify positioning of game objects, navigate to the corresponding scene (the scenes are
independent of each other, i.e., what you do to the game objects in one will not affect the other),
and then using the scene tools you can resize, relocated, and modify the game objects that you
require.

To modify the scripts, navigate to the corresponding subfolder in scripts (i.e., enemies, farmer, or
inventory) and from there click on the script to open it in your C# IDE, and go crazy.

78

https://unity.com/unity-hub
https://github.com/sdmay25-37/GameDesignUnity
https://git-scm.com/downloads
https://code.visualstudio.com/download

Testing (Unity Only)

Following any modifications that you make, you will need to test them. To do so, navigate to the
Unity editor, wait for the update to load, and then select the run button in the top right corner.
Following that, check the console for any errors and then check that your changes took effect and
are bug-free.

APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN

Initial Engine Design

The initial design of the game engine was not very different from the current version, only with two
significant changes:

1. Entity-Component-System (ECS) Software;
2. Repository Organizations.

For the ECS, a custom version was created, but multiple failures in terms of performance combined
with manpower forced a pivot to a well-established ECS system, ENTT. The initial version was
simply impossible to prepare and finish due to the time constraints and scope of the project.
Considering that ENTT and other ECS libraries have been in development for multiple years, this
was not very surprising.

Additionally, as our repository increased in size and functionality, the number of subfolders was
increased to enhance readability and compartmentalization. Figure A2.1 details a high-level
overview of the changes that were performed.

Figure A2.X – Appendix 2: Changes in Repository Organization (initial versus current)

Initial Game Design

Since the game design process was broken down into two separate states, Unity development and
porting over to the non-euclidean engine, they will be handled separately.

79

For the Unity prototype, the initial game’s base functionality follows closely what is currently
implemented in the play test build, with the only differences being:

1. Reduction in the number of scenes implemented
2. Not implementing the extra “planned” game mechanics of fishing and mini-puzzles

Four were initially planned for the scenes: the home scene, a lake/pond, the forest scene, and a blue
light biome. The limited time in the semester, as well as the difficulties of integrating the different
aspects of scenes simultaneously being developed the scope of this was unreasonable, forcing the
reduction from the planned four scenes down to just two, being the home/farm scene and the forest
scene.

Regarding the extra game mechanics (i.e., fishing and mini puzzles), they were cut from the
development process for the same reasons as the scene reduction state above.

For the version of the game ported over from Unity to the engine, several key changes were made:

1. Original plan: implement the Unity version of the game on the engine, modified to only
implement the forest scene

For this change, we pivoted from the idea of implementing the entire Unity prototype onto the
non-euclidean engine to only implementing a modified forest scene. This change was brought
about by the limited time in a semester, compounded with delays due to difficulty with the math for
the Non-Euclidean shaders and mapping. As a result, the remaining time was not enough for a full
implementation of the game, so we implemented a modified version of the forest scene because it
was the best way to demonstrate the Non-Euclidean aspect of the game engine.

80

APPENDIX 3 – OTHER CONSIDERATIONS

A: Personas and Empathy Maps

Personas

Figure 13 – Appendix 3 : Max User Persona

81

Figure 14 - Appendix 3: Sally User Persona

Figure 15 - Appendix 3: Jordan User Persona

82

Empathy Map:

Figure 16 - Appendix 3: Empathy Map

Playtest Document

83

84

APPENDIX 4 – CODE
Code Repo: https://github.com/sdmay25-37

Non-Euclidean Engine Submodules

The current file structure of the project is shown in Figure A4.X. As mentioned in Appendix 1, the
directory is divided into folders and subfolders to provide compartments for each individual
submodule present in the project.

85

https://github.com/sdmay25-37

Figure 16 - Appendix 4 - Repository file structure

Due to the sheer number of lines of code that we’ve written, snippets of code will not be included in
this appendix, but a high-level overview of each folder and key submodule will be included in this
section.

The following folders are used for assets, external libraries, and testing classes:

1. lib/ contains external third-party libraries;
2. res/ contains resources for the engine;

a. atlases/ contains texture atlases for sprites;
b. fonts/ contains fonts for displaying text;
c. textures/ contains individual spritesheets for sprites and animations;

3. shaders/ contains shader code used for the Non-Euclidean shaders;
4. tests/ contains example classes using the engine for manual testing;

a. unitTests/ contains unit tests written using the Catch2 framework.
b. json/ contains tile mappings used for rendering

The Non-Euclidean engine has multiple submodules created from general abstractions needed to
run a video game. Each module contains the following functionality:

1. ne_graphics/ - Graphics Submodule: The graphics submodule contains classes used for
the render loop, managing shaders, managing textures, and storing images;

86

2. ne_input/ - Input Submodule: The input submodule contains managers for handling
input to the GLFW window that the engine displays textures and shapes to, and loading
stored keybindings from a JSON file.

3. ne_plugin / Window submodule: The window submodule contains a wrapper class for
the GLFWWindow for managing the window.

4. ne_shapes/ - Math Submodule: The math submodule contains code relating to
hyperbolic rotations and the tessellations that are performed with the shaders;

5. ne_system/ - System Submodule: The system submodule contains a scheduling
subsystem that optimizes the processing of subsystems;

6. ne_ui/ - User Interface Submodule: The UI submodule contains functionality for using a
GUI to manually create and manage texture atlases, animations, files, and key mappings to
allow for an intuitive development experience for the game design team;

7. ne_util/ - Utility Submodule: The util submodule contains various helper tools created
for optimizations and general miscellaneous use.

8. ne_tile/ - Tilemap Submodule: the submodule contains the classes used to map tiles
and figure out what sprites to render where

External Libraries

General Management

ENTT

ENTT is the Entity-Component-System (ECS) used for managing resources and custom
components. The library manages the registry system, which is used for resource management and
allocation. Through this ECS, custom components are registered for use and management, allowing
for a programming style similar to Unity development [9].

Graphics

Glad

Glad is the primary library used in conjunction with GLFW to expose the OpenGL graphics API for
graphics programming. The library is not directly used in terms of API calls, but the library itself
allows us to make custom shaders with OpenGL [10].

GLFW

GLFW is the wrapper library for Glad, allowing for window display, input capturing, etc. The GLFW
library is the primary library used for rendering and window management, proving imperative for
the project. The Input management and rendering subsystems are built on GLFW functionality
(action callbacks and graphics buffers) [11].

ImGui

Additional library to create 2-dimensional Graphical User Interfaces.. Used for creating menus,
displayable text, and interface for texture atlasing [12].

87

Math

Eigen

Eigen provides various mathematical functions in C++, often used instead of standard libraries. The
library itself was primarily used in the prototyping phase, demonstrating proof-of-concept
demonstrations of the hyperbolic geometry in a normal C++ source file as opposed to the final
shader mathematics [13].

Glm

glm provides fundamental data structures of multiple sizes, used in the graphics pipeline and
storage of float or position information. The library provides matrices and vectors of size 2-4, which
are used extensively in the shaders to provide rotations on the points in space. Additionally, the
vectors are used for passing data from stage to stage in the graphics pipeline (vertex to fragment
shader) [14].

Loading/Writing Files

JSON

Nlohmann’s JSON library [15] is used for loading and storing keybinds from files, providing offline
storage of the keybinds, used primarily for saving custom keybinds without hardcoding the values.
Additionally, the library provides simple reading and writing to JSON formats, allowing for simple
parsing and processing of JSON data [15].

Stb_image

stb_image is a graphics library used for loading JPEG files. The library is utilized primarily for
loading spritesheets to be used and managed for sprites, animations, and atlases.. The single
include had to be modified due to issues with the header guard failing upon including in multiple
files[16].

APPENDIX 5 – TEAM CONTRACT

Team Members

● Tasman Grinnell
● Joshua Deaton
● Lincoln Kness
● Ben Johnson
● Zach Rapoza
● Spencer Thiele
● Cory Roth

Required Skill Sets for Your Project

● Basic Coding Skills
● Strong Math Background (geometry, calculus)
● Ability to work well with others
● Basic understanding of OpenGL

88

● Basic understanding of Unity
● Ability to be flexible with schedule
● Software Architecture Design
● Git
● Creative Skills
● Software Development Practices

Skill Sets Covered by the Team

Skill Covered By

Basic Coding Skills Everyone

Strong Math Background (geometry, calculus) Josh, Tasman, Ben

Ability to work well with others

Everyone

Basic understanding of OpenGL Ben, Josh, Tasman

Basic understanding of Unity Spencer, Lincoln

Ability to be flexible with schedule Everyone

Software Architecture Design Cory, Lincoln, Spencer, Ben

Git Everyone

Creative Skills Spencer, Zach, Ben, Lincoln

Software Development Practices Cory, Tasman, Spencer, Ben, Lincoln, Zach

Table 12 – Team Skillset

Project Management Style Adopted by the Team
This project adopted a hybrid of both waterfall and agile approaches. The overarching method
consisted of a waterfall approach for the high-level structure of the timeline and task
decomposition, but the specific task completion used an agile approach. This structure was chosen
mainly because of the time constraint given. The timeframe for this project was only 2 semesters to
produce the working final deliverables. Due to this constraint, a more rigid schedule is favored to
ensure deadlines are met. This rigid schedule better aligns with a waterfall approach.

Another reason this approach was adopted was the dependency of tasks. Specific tasks depend on
the previous task being completed, so a more agile approach cannot be taken. Things can only be
iteratively improved upon when there is something to be improved upon. Once the group
developed a semi-functional video game prototype, a more iterative approach was taken towards
tasks and problems. This meant that there was a shift over the year from a heavy focus on waterfall
to a heavier emphasis on the agile approach.

Finally, an agile approach to completing tasks was chosen because it made changes to the
requirements easier. As this was a student-proposed project, the client was a student, which allowed
for more frequent client feedback. It also allowed the project's direction to be changed more
seamlessly. This allows for more flexibility with the requirements and improved group
decision-making.

89

Individual Project Management Roles

Individual Roles

Tasman Grinnell Project Manager
Render Engineer
Advisor Interaction

Spencer Thiele Game Designer
Prototype Lead

Zachary Rapoza Game Designer
Art Lead

Lincoln Kness Game Design Lead
Web Master

Joshua Deaton Render Engineer
Math Lead

Benjamin Johnson Render Engineer Lead
System Engineer

Cory Roth Note Writer
Game Designer

Team Contract

Team Members:

1) _______Joshua Deaton_____________ 2) ________Tasman Grinnell___________

3) _______Benjamin Johnson__________ 4) ________Lincoln Kness ____________

5) _______Zachary Rapoza ___________ 6) ________Cory Roth________________

7) _______Spencer Thiele ____________

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:

● Face to Face weekly meeting on Wednesday from 1:30-3:00 for a larger team.
● Smaller team meetings will vary weekly.
● Meet as a large team in a library group room.

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., email,
phone, app, face-to-face):

● The majority of communication updates, reminders, issues, and team meetings should be
done through the Discord channel.

● Scheduling meetings with the advisor will be done through email with the team cc’d.

90

3. Decision-making policy (e.g., consensus, majority vote):

● Important decisions about the development of this project should be relative consensus.
● More minor issues can be decided with a majority vote.

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

● Every meeting, someone will take notes about what was discussed and make a list of issues
of what to accomplish before the next meeting.

● Meeting minutes and notes will be posted in the shared Google Drive.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

● Excluding the case where there are prior commitments (i.e., other classes/labs/etc),
members should attend every meeting.

● If a member cannot attend a meeting, they must notify the team beforehand.
● Team members should be on time for meetings.
● Team members should actively participate in meetings and give their input to influence

how this project develops.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

● As we break down what tasks must be done (in weekly meetings), we will assign tasks to
team members. We will also assign a tentative deadline for when we expect the task to be
completed.

● Team members are responsible for completing their tasks on time, notifying the team if
such a deadline is not reasonable, and setting a new reasonable deadline.

● A general timeline is outlined in the project description of when vital milestones should be
accomplished. It is the responsibility of the group to assign tasks to members to stay within
the bounds of the timeline. There is also a general understanding that the timeline may
change as the project progresses.

3. Expected level of communication with other team members:

● Team members should communicate with other team members when needed. As we are
breaking into groups for the project, there should be a good line of communication in each
group to ensure that each member is on the same page.

● A team member is responsible for communicating with other members if/when unexpected
circumstances arise.

● Non-in-person communication should be over Discord
● Team members should respond to important Discord messages within 24 hours

4. Expected level of commitment to team decisions and tasks:

● Team members should commit to this project just as any other project-based class,
understanding that most work will be done outside of scheduled class time and on their
own time.

91

● Team members should be willing to go forth with decisions made by the team and should
have announced their issues with any decisions when the decision was made.

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,

individual component design, testing, etc.):

Individual Role Responsibility

Tasman Grinnell Project Manager Manage the project
In charge of communication with our
advisor (Dr. Zambreno)
Ensures that the team goals are being
met
Facilitates communication between
teams
Implement Features in Game Engine

Spencer Thiele Game Design Lead Responsible for leading the Game
design team, including setting up
meetings, managing scope, and
ensuring the Game Design timeline is
met
Also responsible for making significant
progress in Game Design, Prototyping,
and Game Engine Development

Zachary Rapoza Game Design Engineer Responsible for flushing out sprites/art
In charge of prototype testing
Responsible for creating and testing
mechanics for the game

Lincoln Kness Game Design Engineer Game Design, as well as keeping our
website up to date
Responsible for creating and testing
mechanics for the game

Joshua Deaton Rendering Engine Lead Set up meetings with the rendering
team
Encourage progress on the rendering
engine is being made
 Encourage collaboration on the
rendering team
Build a low-level implementation of
the rendering engine
Focus on getting a working
Non-Euclidean model

92

Benjamin Johnson System Engineer Build a low-level implementation of
the rendering engine
Develop additional features to make a
functional game engine

Cory Roth Rendering Engine Engineer Build a low-level implementation of
the rendering engine.
Develop additional features to make a
functional game engine.
Ensures assignments are completed on
Canvas.
Take notes at every meeting

Table 14 - Leadership Roles

2. Strategies for supporting and guiding the work of all team members:

● Small teams: Our strategies will follow a similar path to the agile development cycle for
small teams. In the small teams, we will set goals for bi-weekly ‘sprints.’ We will also have a
regular weekly check-up, with the ability to schedule smaller check-up meetings when
necessary.

● Between teams, we will have a weekly meeting to discuss any significant issues that the
teams face, along with syncing the process between the engine and design stages when
necessary.

3. Strategies for recognizing the contributions of all team members:

● Since we will be working in smaller teams, the individual team leader will check to see what
has been accomplished by the team, whether that is overcoming a blocker or just finishing
a challenging section. The team leaders will then bring up the accomplishments at the big
team meeting the week following the end of the small team meetings.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the team.

Member Skills, Expertise, and Unique Perspective

Spencer Avid interest in game development and already has prior experience in game
design. He has experience in C#, Unity, and WebGL.

Josh Experience with C/C++ and CMake. He is also decent at math and will help with
the Non-Euclidean development.

Zach Experience in C and some in C++, along with an interest in game design.

Ben Previous experience with OpenGL and game engine rendering. Currently taking
Computer Graphics class.

93

Lincoln Experience in C/C++ as well as JavaScript, CSS, and HTML. Is interested in game
development and has experience with Unity.

Tasman Experience in C/C++. Has an uncanny skill of understanding complex technical
details.

Cory Experience in and enjoyment of debugging. Has experience with C/C++.

Table 15 - Member Skills

2. Strategies for encouraging and supporting contributions and ideas from all team members:

● Reaching out to a team member and asking if they are stuck on understanding or in writing
a code block

● When giving opinions on an idea or contribution, team members should point out a
positive feature when providing constructive feedback.

● Team members should understand that everyone has a unique perspective and that their
point of view is still valid even if they disagree with their idea.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a team
member inform the team that the team environment obstructs their opportunity or ability to
contribute?)

● If team members believe the environment obstructs their progress, they should bring it up
in the weekly small team meetings or in their respective Discord channels. They should also
arrange a time to talk with the team about how we should propose a solution.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:

● To develop a design and implementation plan for a Non-Euclidean game engine and a
game to run on top of that engine.

● To start developing the early stages of the game and engine.
● Promote a positive group environment where each individual feels comfortable

contributing to the group.

2. Strategies for planning and assigning individual and team work:

● We will break down the team of 7 into two separate teams, focusing primarily on the game
development and Non-Euclidean engine aspects.

● Within those specific teams, work will be divided and assigned as the team decides on what
needs to be done.

3. Strategies for keeping on task:

● Create a clear and structured plan
● Follow the plan
● Communicate if there are issues early and often

94

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

● If a team member cannot meet one of their obligations, the other team members will try to
talk with them and to figure out if we can assign different tasks, work together to
accomplish the task or other possible solutions.

2. What will your team do if the infractions continue?

● If this issue arises, we will bring it to the attention of our advisor on how to continue, but
we believe this will be fine in our project.

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) __Tasman Grinnell_________________________________ DATE _9/17__

2) __Cory Roth ______________________________________ DATE _9/17___

3) __Lincoln Kness ___________________________________ DATE _9/17___

4) __Joshua Deaton___________________________________ DATE _9/17___

5) __Zachary Razpoa__________________________________ DATE _9/17___

6) __Benjamin Johnson________________________________ DATE _9/17___

7) __Spencer Thiele___________________________________ DATE _9/17___

95

	Executive Summary
	Learning Summary
	Table of Contents
	 Table of Figures
	Table of Tables
	1 Introduction
	1.1 PROBLEM STATEMENT
	1.2 INTENDED USERS

	2 Requirements, Constraints, And Standards
	2.1 REQUIREMENTS & CONSTRAINTS
	Game Engine
	Game Design
	Other requirements

	2.2ENGINEERING STANDARDS
	Standard 1
	Standard 2
	Standard 3
	Analysis of Standards

	
	3 Project Plan
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	Game Design Team Milestones
	Game Engine Team Milestones

	3.4 PROJECT TIMELINE/SCHEDULE
	Gantt Charts

	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	Game Design Risks
	Game Design Risk Mitigation Plan
	Game Design Risk Analysis
	Game Engine Risks
	Game Engine Risk Mitigations Plan
	Game Engine Risk Analysis

	3.6 PERSONNEL EFFORT REQUIREMENTS
	Game Design Hours
	
	
	Game Engine Hours

	3.7 OTHER RESOURCE REQUIREMENTS

	
	4 Design
	4.1 DESIGN CONTEXT
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	Key Decisions

	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3PROPOSED DESIGN
	4.3.1 Overview
	Game Design - Lights Out
	Game Engine

	4.3.2 Detailed Design and Visual(s)
	The Game Engine
	Entity Component System
	Laptop

	4.3.3 Functionality
	System Loop

	4.3.4 Areas of Concern and Development

	4.4 TECHNOLOGY CONSIDERATIONS

	
	5 Testing
	5.1UNIT TESTING
	5.2INTERFACE TESTING
	5.3INTEGRATION TESTING
	5.4SYSTEM TESTING
	5.5REGRESSION TESTING
	5.6ACCEPTANCE TESTING
	5.7USER TESTING
	5.8RESULTS

	
	6 Implementation
	6.1 GAME DESIGN IMPLEMENTATIONS
	Prototyping
	Integration
	Scene Development
	Current Status
	Monsters
	Shops

	6.2 ENGINE IMPLEMENTATIONS
	Current Status
	Math
	Example Prototypes

	6.3 DESIGN ANALYSIS
	Functionality That Works Well
	Functionality That Does Not Work as Expected

	
	7 Ethics and Professional Responsibility
	7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.2 FOUR PRINCIPLES
	7.3 VIRTUES
	Three virtues essential to the team
	Individual Virtues

	8 Conclusions
	8.1 SUMMARY OF PROGRESS
	8.2 VALUE PROVIDED
	8.3 NEXT STEPS
	Summary of Next Steps

	
	9 References
	10 Appendices
	APPENDIX 1 – OPERATION MANUAL
	Engine Manual
	Engine Overview
	Using the Engine
	Development
	Coding Conventions:

	Using the Engine
	Custom Components

	Game Manual
	Setup
	Development (Unity Only)
	Testing (Unity Only)

	APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN
	Initial Engine Design
	Initial Game Design

	APPENDIX 3 – OTHER CONSIDERATIONS
	A: Personas and Empathy Maps
	Personas
	Empathy Map:

	APPENDIX 4 – CODE
	Non-Euclidean Engine Submodules
	External Libraries
	General Management
	Graphics
	Math
	Loading/Writing Files

	APPENDIX 5 – TEAM CONTRACT
	Team Members
	Required Skill Sets for Your Project
	Skill Sets Covered by the Team
	Project Management Style Adopted by the Team
	Individual Project Management Roles
	Team Contract
	Team Members:
	Team Procedures
	Participation Expectations
	Leadership
	Collaboration and Inclusion
	Goal-Setting, Planning, and Execution
	Consequences for Not Adhering to Team Contract

